{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T04:27:00Z","timestamp":1729052820977},"publisher-location":"Cham","reference-count":43,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031739026","type":"print"},{"value":"9783031739033","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T00:00:00Z","timestamp":1729036800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,16]],"date-time":"2024-10-16T00:00:00Z","timestamp":1729036800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73903-3_10","type":"book-chapter","created":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T21:01:53Z","timestamp":1729026113000},"page":"144-159","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Fully Bayesian Approach to\u00a0Bilevel Problems"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3807-5425","authenticated-orcid":false,"given":"Vedat","family":"Dogan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6218-9158","authenticated-orcid":false,"given":"Steven","family":"Prestwich","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0090-2085","authenticated-orcid":false,"given":"Barry","family":"O\u2019Sullivan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,16]]},"reference":[{"key":"10_CR1","doi-asserted-by":"crossref","unstructured":"Angelo, J.S., Krempser, E., Barbosa, H.J.: Differential evolution for bilevel programming. In: IEEE Congress on Evolutionary Computation, pp. 470\u2013477 (2013)","DOI":"10.1109\/CEC.2013.6557606"},{"key":"10_CR2","unstructured":"Authors, T.G.: GPyOpt: a Bayesian optimization framework in python (2016)"},{"issue":"1","key":"10_CR3","doi-asserted-by":"publisher","first-page":"77","DOI":"10.1016\/0305-0548(82)90007-7","volume":"9","author":"JF Bard","year":"1982","unstructured":"Bard, J.F., Falk, J.E.: An explicit solution to the multi-level programming problem. Comput. Oper. Res. 9(1), 77\u2013100 (1982)","journal-title":"Comput. Oper. Res."},{"issue":"1","key":"10_CR4","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1287\/opre.21.1.37","volume":"21","author":"J Bracken","year":"1973","unstructured":"Bracken, J., McGill, J.T.: Mathematical programs with optimization problems in the constraints. Oper. Res. 21(1), 37\u201344 (1973)","journal-title":"Oper. Res."},{"issue":"5","key":"10_CR5","doi-asserted-by":"publisher","first-page":"1086","DOI":"10.1287\/opre.22.5.1086","volume":"22","author":"J Bracken","year":"1974","unstructured":"Bracken, J., McGill, J.T.: Defense applications of mathematical programs with optimization problems in the constraints. Oper. Res. 22(5), 1086\u20131096 (1974)","journal-title":"Oper. Res."},{"issue":"2","key":"10_CR6","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1109\/TEVC.2019.2919762","volume":"24","author":"X Cai","year":"2020","unstructured":"Cai, X., Gao, L., Li, X.: Efficient generalized surrogate-assisted evolutionary algorithm for high-dimensional expensive problems. IEEE Trans. Evol. Comput. 24(2), 365\u2013379 (2020)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10_CR7","doi-asserted-by":"publisher","first-page":"106410","DOI":"10.1016\/j.cor.2023.106410","volume":"161","author":"JF Camacho","year":"2024","unstructured":"Camacho, J.F., Corpus, C., Villegas, J.G.: Metaheuristics for bilevel optimization: a comprehensive review. Comput. Oper. Res. 161, 106410 (2024)","journal-title":"Comput. Oper. Res."},{"key":"10_CR8","unstructured":"Chen, L., Liu, H.L., Li, K., Tan, K.C.: Evolutionary bi-level optimization via multi-objective transformation-based lower level search. IEEE Trans. Evol. Comput. 1 (2023)"},{"key":"10_CR9","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s10589-005-4612-4","volume":"30","author":"B Colson","year":"2005","unstructured":"Colson, B., Marcotte, P., Savard, G.: A trust-region method for nonlinear bilevel programming: algorithm and computational experience. Comput. Optim. Appl. 30, 211\u2013227 (2005)","journal-title":"Comput. Optim. Appl."},{"key":"10_CR10","unstructured":"Cox, D.D., John, S.: SDO: a statistical method for global optimization. In: Multidisciplinary Design Optimization: State-of-the-Art, pp. 315\u2013329 (1997)"},{"key":"10_CR11","series-title":"Communications in Computer and Information Science","doi-asserted-by":"publisher","first-page":"409","DOI":"10.1007\/978-3-031-26438-2_32","volume-title":"Artificial Intelligence and Cognitive Science","author":"V Dogan","year":"2023","unstructured":"Dogan, V., Prestwich, S.: Bayesian optimization with multi-objective acquisition function for bilevel problems. In: Longo, L., O\u2019Reilly, R. (eds.) AICS 2022. CCIS, vol. 1662, pp. 409\u2013422. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-26438-2_32"},{"key":"10_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"243","DOI":"10.1007\/978-3-031-53969-5_19","volume-title":"Machine Learning, Optimization, and Data Science","author":"V Dogan","year":"2024","unstructured":"Dogan, V., Prestwich, S.: Bilevel optimization by conditional Bayesian optimization. In: Nicosia, G., Ojha, V., La Malfa, E., La Malfa, G., Pardalos, P.M., Umeton, R. (eds.) LOD 2023, Part I. LNCS, vol. 14505, pp. 243\u2013258. Springer, Heidelberg (2024). https:\/\/doi.org\/10.1007\/978-3-031-53969-5_19"},{"issue":"1","key":"10_CR13","doi-asserted-by":"publisher","first-page":"83","DOI":"10.1109\/21.101139","volume":"21","author":"T Edmunds","year":"1991","unstructured":"Edmunds, T., Bard, J.: Algorithms for nonlinear bilevel mathematical programs. IEEE Trans. Syst. Man Cybern. 21(1), 83\u201389 (1991)","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"10_CR14","doi-asserted-by":"crossref","unstructured":"Frazier, P.: A tutorial on Bayesian optimization. ArXiv abs\/1807.02811 (2018)","DOI":"10.1287\/educ.2018.0188"},{"issue":"3","key":"10_CR15","doi-asserted-by":"publisher","first-page":"2921","DOI":"10.1109\/TSG.2023.3329726","volume":"15","author":"K Girigoudar","year":"2024","unstructured":"Girigoudar, K., Roald, L.A.: Identifying secure operating ranges for der control using bilevel optimization. IEEE Trans. Smart Grid 15(3), 2921\u20132933 (2024)","journal-title":"IEEE Trans. Smart Grid"},{"issue":"5","key":"10_CR16","doi-asserted-by":"publisher","first-page":"1194","DOI":"10.1137\/0913069","volume":"13","author":"P Hansen","year":"1992","unstructured":"Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel programming. SIAM J. Sci. Stat. Comput. 13(5), 1194\u20131217 (1992)","journal-title":"SIAM J. Sci. Stat. Comput."},{"key":"10_CR17","doi-asserted-by":"publisher","first-page":"102640","DOI":"10.1016\/j.omega.2022.102640","volume":"110","author":"AB Haywood","year":"2022","unstructured":"Haywood, A.B., Lunday, B.J., Robbins, M.J.: Intruder detection and interdiction modeling: a bilevel programming approach for ballistic missile defense asset location. Omega 110, 102640 (2022)","journal-title":"Omega"},{"issue":"2","key":"10_CR18","doi-asserted-by":"publisher","first-page":"258","DOI":"10.1109\/TEVC.2018.2849000","volume":"23","author":"X He","year":"2019","unstructured":"He, X., Zhou, Y., Chen, Z.: Evolutionary bilevel optimization based on covariance matrix adaptation. IEEE Tran. Evol. Comput. 23(2), 258\u2013272 (2019)","journal-title":"IEEE Tran. Evol. Comput."},{"key":"10_CR19","doi-asserted-by":"publisher","first-page":"120311","DOI":"10.1016\/j.apenergy.2022.120311","volume":"330","author":"Q Hong","year":"2023","unstructured":"Hong, Q., Meng, F., Liu, J., Bo, R.: A bilevel game-theoretic decision-making framework for strategic retailers in both local and wholesale electricity markets. Appl. Energy 330, 120311 (2023)","journal-title":"Appl. Energy"},{"key":"10_CR20","unstructured":"Jiang, H., Chou, K., Tian, Y., Zhang, X., Jin, Y.: Efficient surrogate modeling method for evolutionary algorithm to solve bilevel optimization problems. IEEE Trans. Cybern. 1\u201313 (2023)"},{"key":"10_CR21","doi-asserted-by":"crossref","unstructured":"Kieffer, E., Danoy, G., Bouvry, P., Nagih, A.: Bayesian optimization approach of general bi-level problems. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO 2017, pp. 1614\u20131621. Association for Computing Machinery, New York (2017)","DOI":"10.1145\/3067695.3082537"},{"key":"10_CR22","doi-asserted-by":"crossref","unstructured":"Kleinert, T., Labb\u00e9, M., Plein, F., Schmidt, M.: Technical note\u2014there\u2019s no free lunch: on the hardness of choosing a correct big-M in bilevel optimization. Oper. Res. 68 (2020)","DOI":"10.1287\/opre.2019.1944"},{"key":"10_CR23","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"1169","DOI":"10.1007\/11785231_122","volume-title":"Artificial Intelligence and Soft Computing \u2013 ICAISC 2006","author":"X Li","year":"2006","unstructured":"Li, X., Tian, P., Min, X.: A hierarchical particle swarm optimization for solving bilevel programming problems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., \u017burada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1169\u20131178. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11785231_122"},{"issue":"1","key":"10_CR24","doi-asserted-by":"publisher","first-page":"503","DOI":"10.1007\/BF01589116","volume":"45","author":"DC Liu","year":"1989","unstructured":"Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1), 503\u2013528 (1989)","journal-title":"Math. Program."},{"key":"10_CR25","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1007\/978-3-540-28650-9_4","volume-title":"Advanced Lectures on Machine Learning","author":"CE Rasmussen","year":"2004","unstructured":"Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., R\u00e4tsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63\u201371. Springer, Heidelberg (2004). https:\/\/doi.org\/10.1007\/978-3-540-28650-9_4"},{"key":"10_CR26","doi-asserted-by":"crossref","unstructured":"Sinha, A., Lu, Z., Deb, K., Malo, P.: Bilevel optimization based on iterative approximation of mappings. J. Heuristics 26 (2020)","DOI":"10.1007\/s10732-019-09426-9"},{"key":"10_CR27","doi-asserted-by":"crossref","unstructured":"Sinha, A., Malo, P., Deb, K.: Test problem construction for single-objective bilevel optimization. Evol. Comput. 22 (2013)","DOI":"10.1145\/2464576.2480812"},{"key":"10_CR28","doi-asserted-by":"crossref","unstructured":"Sinha, A., Malo, P., Deb, K.: Efficient evolutionary algorithm for single-objective bilevel optimization (2013)","DOI":"10.1145\/2464576.2480812"},{"issue":"2","key":"10_CR29","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1016\/j.ejor.2016.08.027","volume":"257","author":"A Sinha","year":"2017","unstructured":"Sinha, A., Malo, P., Deb, K.: Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping. Eur. J. Oper. Res. 257(2), 395\u2013411 (2017)","journal-title":"Eur. J. Oper. Res."},{"key":"10_CR30","doi-asserted-by":"publisher","first-page":"395","DOI":"10.1016\/j.ejor.2016.08.027","volume":"257","author":"A Sinha","year":"2017","unstructured":"Sinha, A., Malo, P., Deb, K.: Evolutionary algorithm for bilevel optimization using approximations of the lower level optimal solution mapping. Eur. J. Oper. Res. 257, 395\u2013411 (2017)","journal-title":"Eur. J. Oper. Res."},{"issue":"2","key":"10_CR31","doi-asserted-by":"publisher","first-page":"276","DOI":"10.1109\/TEVC.2017.2712906","volume":"22","author":"A Sinha","year":"2018","unstructured":"Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276\u2013295 (2018)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"10_CR32","doi-asserted-by":"crossref","unstructured":"Sinha, A., Soun, T., Deb, K.: Evolutionary bilevel optimization using KKT proximity measure. In: IEEE Congress on Evolutionary Computation, pp. 2412\u20132419 (2017)","DOI":"10.1109\/CEC.2017.7969597"},{"key":"10_CR33","unstructured":"von Stackelberg, H.: Marktform und Gleichgewicht. Die Handelsblatt-Bibliothek \u201cKlassiker der National\u00f6konomie\u201d (1934)"},{"issue":"2","key":"10_CR34","doi-asserted-by":"publisher","first-page":"143","DOI":"10.1080\/00401706.1987.10488205","volume":"29","author":"M Stein","year":"1987","unstructured":"Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29(2), 143\u2013151 (1987)","journal-title":"Technometrics"},{"issue":"2","key":"10_CR35","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1007\/BF02191670","volume":"81","author":"L Vicente","year":"1994","unstructured":"Vicente, L., Savard, G., J\u00fadice, J.: Descent approaches for quadratic bilevel programming. J. Optim. Theory Appl. 81(2), 379\u2013399 (1994)","journal-title":"J. Optim. Theory Appl."},{"key":"10_CR36","doi-asserted-by":"crossref","unstructured":"Wang, G., Shan, S.: Review of metamodeling techniques in support of engineering design optimization. J. Mech. Design 129 (2007)","DOI":"10.1115\/1.2429697"},{"issue":"1","key":"10_CR37","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1109\/MCI.2020.3039067","volume":"16","author":"H Wang","year":"2021","unstructured":"Wang, H., Feng, L., Jin, Y., Doherty, J.: Surrogate-assisted evolutionary multitasking for expensive minimax optimization in multiple scenarios. IEEE Comput. Intell. Mag. 16(1), 34\u201348 (2021)","journal-title":"IEEE Comput. Intell. Mag."},{"key":"10_CR38","doi-asserted-by":"publisher","first-page":"801","DOI":"10.1287\/opre.1090.0695","volume":"57","author":"L Wein","year":"2009","unstructured":"Wein, L.: Or forum\u2014homeland security: from mathematical models to policy implementation. Oper. Res. 57, 801\u2013811 (2009)","journal-title":"Oper. Res."},{"key":"10_CR39","doi-asserted-by":"publisher","first-page":"397","DOI":"10.1007\/BF01096412","volume":"3","author":"DJ White","year":"1993","unstructured":"White, D.J., Anandalingam, G.: A penalty function approach for solving bi-level linear programs. J. Global Optim. 3, 397\u2013419 (1993)","journal-title":"J. Global Optim."},{"key":"10_CR40","doi-asserted-by":"publisher","first-page":"119268","DOI":"10.1016\/j.renene.2023.119268","volume":"219","author":"S Yan","year":"2023","unstructured":"Yan, S., Wang, W., Li, X., Lv, H., Fan, T., Aikepaer, S.: Stochastic optimal scheduling strategy of cross-regional carbon emissions trading and green certificate trading market based on stackelberg game. Renew. Energy 219, 119268 (2023)","journal-title":"Renew. Energy"},{"key":"10_CR41","doi-asserted-by":"crossref","unstructured":"Yin, Y.: Genetic-algorithms-based approach for bilevel programming models. J. Transp. Eng.-ASCE 126 (2000)","DOI":"10.1061\/(ASCE)0733-947X(2000)126:2(115)"},{"key":"10_CR42","doi-asserted-by":"publisher","first-page":"123904","DOI":"10.1016\/j.eswa.2024.123904","volume":"250","author":"Q Zhang","year":"2024","unstructured":"Zhang, Q., Liu, S.Q., D\u2019Ariano, A., Chung, S.H., Masoud, M., Li, X.: A bi-level programming methodology for decentralized mining supply chain network design. Expert Syst. Appl. 250, 123904 (2024)","journal-title":"Expert Syst. Appl."},{"key":"10_CR43","unstructured":"Zheng, A.Y., He, T., Qiu, Y., Wang, M., Wipf, D.: BloomGML: graph machine learning through the lens of bilevel optimization (2024)"}],"container-title":["Lecture Notes in Computer Science","Algorithmic Decision Theory"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73903-3_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,15]],"date-time":"2024-10-15T21:03:47Z","timestamp":1729026227000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73903-3_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,16]]},"ISBN":["9783031739026","9783031739033"],"references-count":43,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73903-3_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,10,16]]},"assertion":[{"value":"16 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ADT","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Algorithmic Decision Theory","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"New Brunswick, NJ","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aldt2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/preflib.github.io\/adt2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}