{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,21]],"date-time":"2024-11-21T05:33:42Z","timestamp":1732167222952,"version":"3.28.0"},"publisher-location":"Cham","reference-count":79,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031736490","type":"print"},{"value":"9783031736506","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,21]],"date-time":"2024-11-21T00:00:00Z","timestamp":1732147200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,21]],"date-time":"2024-11-21T00:00:00Z","timestamp":1732147200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,21]],"date-time":"2024-11-21T00:00:00Z","timestamp":1732147200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,21]],"date-time":"2024-11-21T00:00:00Z","timestamp":1732147200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73650-6_4","type":"book-chapter","created":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T18:16:58Z","timestamp":1732126618000},"page":"49-66","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["LOC3DIFF: Local Diffusion for\u00a03D Human Head Synthesis and\u00a0Editing"],"prefix":"10.1007","author":[{"given":"Yushi","family":"Lan","sequence":"first","affiliation":[]},{"given":"Feitong","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Qiangeng","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Di","family":"Qiu","sequence":"additional","affiliation":[]},{"given":"Kyle","family":"Genova","sequence":"additional","affiliation":[]},{"given":"Zeng","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Sean","family":"Fanello","sequence":"additional","affiliation":[]},{"given":"Rohit","family":"Pandey","sequence":"additional","affiliation":[]},{"given":"Thomas","family":"Funkhouser","sequence":"additional","affiliation":[]},{"given":"Chen Change","family":"Loy","sequence":"additional","affiliation":[]},{"given":"Yinda","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,21]]},"reference":[{"key":"4_CR1","doi-asserted-by":"crossref","unstructured":"An, S., Xu, H., Shi, Y., Song, G., Ogras, U.Y., Luo, L.: Panohead: geometry-aware 3D full-head synthesis in 360deg. In: CVPR, pp. 20950\u201320959 (2023)","DOI":"10.1109\/CVPR52729.2023.02007"},{"key":"4_CR2","doi-asserted-by":"crossref","unstructured":"Anciukevi\u010dius, T., et al.: Renderdiffusion: image diffusion for 3D reconstruction, inpainting and generation. In: CVPR, pp. 12608\u201312618 (2023)","DOI":"10.1109\/CVPR52729.2023.01213"},{"key":"4_CR3","doi-asserted-by":"crossref","unstructured":"Bai, Z., et al.: Efficient 3D implicit head avatar with mesh-anchored hash table blendshapes. In: CVPR, pp. 1975\u20131984 (2024)","DOI":"10.1109\/CVPR52733.2024.00193"},{"key":"4_CR4","doi-asserted-by":"crossref","unstructured":"Bai, Z., et\u00a0al.: Learning personalized high quality volumetric head avatars from monocular RGB videos. In: CVPR, pp. 16890\u201316900 (2023)","DOI":"10.1109\/CVPR52729.2023.01620"},{"key":"4_CR5","doi-asserted-by":"crossref","unstructured":"Besnier, V., Jain, H., Bursuc, A., Cord, M., P\u2019erez, P.: This dataset does not exist: training models from generated images. In: ICASSP (2020)","DOI":"10.1109\/ICASSP40776.2020.9053146"},{"key":"4_CR6","doi-asserted-by":"crossref","unstructured":"Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: SIGGRAPH (1999)","DOI":"10.1145\/311535.311556"},{"key":"4_CR7","unstructured":"Bojanowski, P., Joulin, A., Lopez-Paz, D., Szlam, A.: Optimizing the latent space of generative networks. In: ICLR (2018)"},{"key":"4_CR8","unstructured":"Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR. OpenReview.net (2019). https:\/\/openreview.net\/forum?id=B1xsqj09Fm"},{"key":"4_CR9","doi-asserted-by":"crossref","unstructured":"Chabra, R., et al.: Deep local shapes: learning local SDF priors for detailed 3D reconstruction. In: ECCV (2020)","DOI":"10.1007\/978-3-030-58526-6_36"},{"key":"4_CR10","doi-asserted-by":"crossref","unstructured":"Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: Pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.00574"},{"key":"4_CR11","doi-asserted-by":"crossref","unstructured":"Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: CVPR (2022)","DOI":"10.1109\/CVPR52688.2022.01565"},{"key":"4_CR12","doi-asserted-by":"crossref","unstructured":"Chan, E.R., et al.: GeNVS: generative novel view synthesis with 3D-aware diffusion models. In: arXiv (2023)","DOI":"10.1109\/ICCV51070.2023.00389"},{"key":"4_CR13","doi-asserted-by":"crossref","unstructured":"Chen, X., Deng, Y., Wang, B.: Mimic3D: thriving 3D-aware GANs via 3D-to-2D imitation. In: ICCV (2023)","DOI":"10.1109\/ICCV51070.2023.00222"},{"key":"4_CR14","doi-asserted-by":"crossref","unstructured":"Chen, Y., Wang, T., Wu, T., Pan, X., Jia, K., Liu, Z.: Comboverse: compositional 3D assets creation using spatially-aware diffusion guidance. In: ECCV (2024)","DOI":"10.1007\/978-3-031-72691-0_8"},{"key":"4_CR15","doi-asserted-by":"crossref","unstructured":"Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00482"},{"key":"4_CR16","unstructured":"Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: NIPS, vol. 34, pp. 8780\u20138794 (2021)"},{"key":"4_CR17","unstructured":"Dupont, E., Kim, H., Eslami, S., Rezende, D., Rosenbaum, D.: From data to functa: your data point is a function and you can treat it like one. arXiv preprint arXiv:2201.12204 (2022)"},{"key":"4_CR18","doi-asserted-by":"crossref","unstructured":"Gafni, G., Thies, J., Zollh\u00f6fer, M., Nie\u00dfner, M.: Dynamic neural radiance fields for monocular 4D facial avatar reconstruction. In: CVPR, pp. 8649\u20138658 (2021)","DOI":"10.1109\/CVPR46437.2021.00854"},{"key":"4_CR19","unstructured":"Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)"},{"key":"4_CR20","doi-asserted-by":"crossref","unstructured":"Grassal, P.W., Prinzler, M., Leistner, T., Rother, C., Nie\u00dfner, M., Thies, J.: Neural head avatars from monocular RGB videos. In: CVPR, pp. 18653\u201318664 (2022)","DOI":"10.1109\/CVPR52688.2022.01810"},{"key":"4_CR21","doi-asserted-by":"crossref","unstructured":"Gu, J., Gao, Q., Zhai, S., Chen, B., Liu, L., Susskind, J.: Learning controllable 3D diffusion models from single-view images. arXiv preprint arXiv:2304.06700 (2023)","DOI":"10.1109\/3DV62453.2024.00030"},{"key":"4_CR22","unstructured":"Gu, J., Liu, L., Wang, P., Theobalt, C.: StyleNeRF: a style-based 3D-aware generator for high-resolution image synthesis. In: ICLR (2021)"},{"key":"4_CR23","doi-asserted-by":"crossref","unstructured":"Henzler, P., Mitra, N.J., Ritschel, T.: Escaping Plato\u2019s cave: 3D shape from adversarial rendering. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.01008"},{"key":"4_CR24","unstructured":"Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) NIPS, vol.\u00a033, pp. 6840\u20136851. Curran Associates, Inc. (2020). https:\/\/proceedings.neurips.cc\/paper\/2020\/file\/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf"},{"key":"4_CR25","unstructured":"Hong, F., Chen, Z., Lan, Y., Pan, L., Liu, Z.: EVA3D: compositional 3D human generation from 2D image collections. In: ICLR (2022)"},{"key":"4_CR26","unstructured":"Jahanian, A., Chai, L., Isola, P.: On the \u201csteerability\u201d of generative adversarial networks. In: ICLR (2020)"},{"key":"4_CR27","unstructured":"Jahanian, A., Puig, X., Tian, Y., Isola, P.: Generative models as a data source for multiview representation learning. In: ICLR (2022)"},{"key":"4_CR28","doi-asserted-by":"crossref","unstructured":"Jain, A., Mildenhall, B., Barron, J.T., Abbeel, P., Poole, B.: Zero-shot text-guided object generation with dream fields. In: CVPR (2022)","DOI":"10.1109\/CVPR52688.2022.00094"},{"key":"4_CR29","doi-asserted-by":"crossref","unstructured":"Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00453"},{"key":"4_CR30","doi-asserted-by":"crossref","unstructured":"Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00813"},{"issue":"4","key":"4_CR31","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3592433","volume":"42","author":"B Kerbl","year":"2023","unstructured":"Kerbl, B., Kopanas, G., Leimk\u00fchler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. (ToG) 42(4), 1\u201314 (2023)","journal-title":"ACM Trans. Graph. (ToG)"},{"key":"4_CR32","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"596","DOI":"10.1007\/978-3-031-19824-3_35","volume-title":"ECCV 2022","author":"L Keselman","year":"2022","unstructured":"Keselman, L., Hebert, M.: Approximate differentiable rendering with algebraic surfaces. In: Avidan, S., Brostow, G., Ciss\u00e9, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 596\u2013614. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-19824-3_35"},{"key":"4_CR33","doi-asserted-by":"crossref","unstructured":"Lan, Y., et al.: Ln3diff: scalable latent neural fields diffusion for speedy 3D generation. In: ECCV (2024)","DOI":"10.1007\/978-3-031-73235-5_7"},{"key":"4_CR34","doi-asserted-by":"crossref","unstructured":"Lan, Y., Loy, C.C., Dai, B.: DDF: correspondence distillation from nerf-based GAN. IJCV (2022)","DOI":"10.1007\/s11263-023-01903-w"},{"key":"4_CR35","doi-asserted-by":"crossref","unstructured":"Lan, Y., Meng, X., Yang, S., Loy, C.C., Dai, B.: E3dge: self-supervised geometry-aware encoder for style-based 3D GAN inversion. In: CVPR (2023)","DOI":"10.1109\/CVPR52729.2023.02006"},{"key":"4_CR36","doi-asserted-by":"crossref","unstructured":"Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. TOG 36(6) (2017). https:\/\/doi.org\/10.1145\/3130800.3130813","DOI":"10.1145\/3130800.3130813"},{"key":"4_CR37","doi-asserted-by":"publisher","unstructured":"Lombardi, S., Simon, T., Schwartz, G., Zollhoefer, M., Sheikh, Y., Saragih, J.: Mixture of volumetric primitives for efficient neural rendering. ACM Trans. Graph. 40(4), 1\u201313 (2021). https:\/\/doi.org\/10.1145\/3450626.3459863","DOI":"10.1145\/3450626.3459863"},{"issue":"6","key":"4_CR38","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/2816795.2818013","volume":"34","author":"M Loper","year":"2015","unstructured":"Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. TOG 34(6), 1\u201316 (2015)","journal-title":"TOG"},{"key":"4_CR39","doi-asserted-by":"crossref","unstructured":"Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00459"},{"key":"4_CR40","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"405","DOI":"10.1007\/978-3-030-58452-8_24","volume-title":"Computer Vision \u2013 ECCV 2020","author":"B Mildenhall","year":"2020","unstructured":"Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405\u2013421. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_24"},{"key":"4_CR41","doi-asserted-by":"crossref","unstructured":"M\u00fcller, N., Siddiqui, Y., Porzi, L., Bulo, S.R., Kontschieder, P., Nie\u00dfner, M.: Diffrf: rendering-guided 3D radiance field diffusion. In: CVPR, pp. 4328\u20134338 (2023)","DOI":"10.1109\/CVPR52729.2023.00421"},{"key":"4_CR42","doi-asserted-by":"crossref","unstructured":"Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.: HoloGAN: unsupervised learning of 3D representations from natural images. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.00768"},{"key":"4_CR43","doi-asserted-by":"crossref","unstructured":"Niemeyer, M., Geiger, A.: Giraffe: representing scenes as compositional generative neural feature fields. In: CVPR, pp. 11453\u201311464 (2021)","DOI":"10.1109\/CVPR46437.2021.01129"},{"key":"4_CR44","doi-asserted-by":"crossref","unstructured":"Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J.J., Kemelmacher-Shlizerman, I.: StyleSDF: high-resolution 3D-consistent image and geometry generation. In: CVPR (2021)","DOI":"10.1109\/CVPR52688.2022.01314"},{"key":"4_CR45","unstructured":"Pan, X., Dai, B., Liu, Z., Loy, C.C., Luo, P.: Do 2D GANs know 3D shape? Unsupervised 3D shape reconstruction from 2D image GANs. In: ICLR (2021)"},{"key":"4_CR46","doi-asserted-by":"publisher","first-page":"7474","DOI":"10.1109\/TPAMI.2021.3115428","volume":"44","author":"X Pan","year":"2022","unstructured":"Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C.C., Luo, P.: Exploiting deep generative prior for versatile image restoration and manipulation. PAMI 44, 7474\u20137489 (2022)","journal-title":"PAMI"},{"key":"4_CR47","doi-asserted-by":"crossref","unstructured":"Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR, pp. 165\u2013174 (2019)","DOI":"10.1109\/CVPR.2019.00025"},{"key":"4_CR48","doi-asserted-by":"crossref","unstructured":"Park, K., et al.: Nerfies: deformable neural radiance fields. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00581"},{"key":"4_CR49","doi-asserted-by":"crossref","unstructured":"Park, K., et al.: Hypernerf: a higher-dimensional representation for topologically varying neural radiance fields. TOG 40(6) (2021)","DOI":"10.1145\/3478513.3480487"},{"key":"4_CR50","doi-asserted-by":"crossref","unstructured":"Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: CVPR, pp. 10975\u201310985 (2019)","DOI":"10.1109\/CVPR.2019.01123"},{"key":"4_CR51","unstructured":"Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: Dreamfusion: text-to-3D using 2D diffusion. In: ICLR (2022)"},{"key":"4_CR52","unstructured":"Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML (2021)"},{"key":"4_CR53","doi-asserted-by":"crossref","unstructured":"Rebain, D., Matthews, M., Yi, K.M., Lagun, D., Tagliasacchi, A.: LOLNeRF: learn from one look (2022)","DOI":"10.1109\/CVPR52688.2022.00161"},{"key":"4_CR54","doi-asserted-by":"crossref","unstructured":"Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: CVPR, pp. 10684\u201310695 (2022)","DOI":"10.1109\/CVPR52688.2022.01042"},{"key":"4_CR55","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"4_CR56","unstructured":"Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. In: NIPS, vol. 35, pp. 36479\u201336494 (2022)"},{"key":"4_CR57","unstructured":"Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF: generative radiance fields for 3D-aware image synthesis. In: NIPS (2020)"},{"key":"4_CR58","doi-asserted-by":"crossref","unstructured":"Shue, J., Chan, E., Po, R., Ankner, Z., Wu, J., Wetzstein, G.: 3D neural field generation using triplane diffusion. In: CVPR, pp. 20875\u201320886 (2022). https:\/\/api.semanticscholar.org\/CorpusID:254095843","DOI":"10.1109\/CVPR52729.2023.02000"},{"key":"4_CR59","doi-asserted-by":"crossref","unstructured":"Simsar, E., Tonioni, A., Ornek, E.P., Tombari, F.: Latentswap3D: semantic edits on 3D image GANs. In: ICCVW, pp. 2899\u20132909 (2023)","DOI":"10.1109\/ICCVW60793.2023.00312"},{"key":"4_CR60","unstructured":"Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: ICLR (2021). https:\/\/openreview.net\/forum?id=PxTIG12RRHS"},{"issue":"6","key":"4_CR61","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3550454.3555506","volume":"41","author":"J Sun","year":"2022","unstructured":"Sun, J., Wang, X., Shi, Y., Wang, L., Wang, J., Liu, Y.: IDE-3D: interactive disentangled editing for high-resolution 3D-aware portrait synthesis. ACM Trans. Graph. (TOG) 41(6), 1\u201310 (2022). https:\/\/doi.org\/10.1145\/3550454.3555506","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"4_CR62","doi-asserted-by":"crossref","unstructured":"Sun, J., et al.: Next3D: generative neural texture rasterization for 3D-aware head avatars. In: CVPR (2023)","DOI":"10.1109\/CVPR52729.2023.02011"},{"key":"4_CR63","doi-asserted-by":"crossref","unstructured":"Sun, J., et al.: FENeRF: face editing in neural radiance fields (2021)","DOI":"10.1109\/CVPR52688.2022.00752"},{"key":"4_CR64","doi-asserted-by":"crossref","unstructured":"Tan, F., et al.: Volux-GAN: a generative model for 3D face synthesis with HDRI relighting. In: ACM SIGGRAPH 2022 Conference Proceedings, pp.\u00a01\u20139 (2022)","DOI":"10.1145\/3528233.3530751"},{"key":"4_CR65","doi-asserted-by":"crossref","unstructured":"Wang, T., et\u00a0al.: Rodin: a generative model for sculpting 3D digital avatars using diffusion. In: CVPR, pp. 4563\u20134573 (2023)","DOI":"10.1109\/CVPR52729.2023.00443"},{"key":"4_CR66","doi-asserted-by":"crossref","unstructured":"Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: ECCVW (2018)","DOI":"10.20944\/preprints201811.0400.v1"},{"key":"4_CR67","doi-asserted-by":"crossref","unstructured":"Wang, Z., et al.: MVDD: multi-view depth diffusion models. In: ECCV (2024)","DOI":"10.1007\/978-3-031-72624-8_14"},{"key":"4_CR68","doi-asserted-by":"crossref","unstructured":"Xiang, J., Yang, J., Deng, Y., Tong, X.: Gram-HD: 3D-consistent image generation at high resolution with generative radiance manifolds. In: ICCV, pp. 2195\u20132205 (2023)","DOI":"10.1109\/ICCV51070.2023.00209"},{"key":"4_CR69","doi-asserted-by":"crossref","unstructured":"Xiang, J., Yang, J., Huang, B., Tong, X.: 3D-aware image generation using 2D diffusion models. In: ICCV, pp. 2383\u20132393 (2023)","DOI":"10.1109\/ICCV51070.2023.00226"},{"key":"4_CR70","doi-asserted-by":"crossref","unstructured":"Xu, Q., et al.: Point-nerf: point-based neural radiance fields. In: CVPR, vol. abs\/2201.08845 (2022)","DOI":"10.1109\/CVPR52688.2022.00536"},{"issue":"6","key":"4_CR71","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3550454.3555437","volume":"41","author":"S Yang","year":"2022","unstructured":"Yang, S., Jiang, L., Liu, Z., Loy, C.C.: VToonify: controllable high-resolution portrait video style transfer. ACM Trans. Graph. (TOG) 41(6), 1\u201315 (2022). https:\/\/doi.org\/10.1145\/3550454.3555437","journal-title":"ACM Trans. Graph. (TOG)"},{"key":"4_CR72","doi-asserted-by":"publisher","first-page":"2878","DOI":"10.1109\/TPAMI.2012.261","volume":"35","author":"Y Yang","year":"2013","unstructured":"Yang, Y., Ramanan, D.: Articulated human detection with flexible mixtures of parts. PAMI 35, 2878\u20132890 (2013)","journal-title":"PAMI"},{"key":"4_CR73","unstructured":"Zeng, X., et al.: Lion: latent point diffusion models for 3D shape generation. In: NIPS (2022)"},{"key":"4_CR74","doi-asserted-by":"crossref","unstructured":"Zhang, L., Rao, A., Agrawala, M.: Adding conditional control to text-to-image diffusion models. In: ICCV (2023)","DOI":"10.1109\/ICCV51070.2023.00355"},{"key":"4_CR75","doi-asserted-by":"crossref","unstructured":"Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00068"},{"key":"4_CR76","doi-asserted-by":"crossref","unstructured":"Zhang, X., Bi, S., Sunkavalli, K., Su, H., Xu, Z.: Nerfusion: fusing radiance fields for large-scale scene reconstruction. In: CVPR, pp. 5449\u20135458 (2022)","DOI":"10.1109\/CVPR52688.2022.00537"},{"key":"4_CR77","doi-asserted-by":"crossref","unstructured":"Zhang, X., Kundu, A., Funkhouser, T., Guibas, L., Su, H., Genova, K.: Nerflets: local radiance fields for efficient structure-aware 3D scene representation from 2D supervision. In: CVPR (2023)","DOI":"10.1109\/CVPR52729.2023.00800"},{"key":"4_CR78","doi-asserted-by":"crossref","unstructured":"Zhang, Y., et al.: DatasetGAN: efficient labeled data factory with minimal human effort. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.01001"},{"key":"4_CR79","doi-asserted-by":"crossref","unstructured":"Zheng, Y., Abrevaya, V.F., B\u00fchler, M.C., Chen, X., Black, M.J., Hilliges, O.: Im avatar: implicit morphable head avatars from videos. In: CVPR (2022)","DOI":"10.1109\/CVPR52688.2022.01318"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73650-6_4","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T19:02:39Z","timestamp":1732129359000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73650-6_4"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,21]]},"ISBN":["9783031736490","9783031736506"],"references-count":79,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73650-6_4","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,21]]},"assertion":[{"value":"21 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}