{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T05:09:55Z","timestamp":1731733795820,"version":"3.28.0"},"publisher-location":"Cham","reference-count":31,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031734991"},{"type":"electronic","value":"9783031735004"}],"license":[{"start":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T00:00:00Z","timestamp":1731715200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T00:00:00Z","timestamp":1731715200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T00:00:00Z","timestamp":1731715200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,16]],"date-time":"2024-11-16T00:00:00Z","timestamp":1731715200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73500-4_23","type":"book-chapter","created":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T04:00:47Z","timestamp":1731643247000},"page":"273-284","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["A Multidimensional Taxonomy for\u00a0Recent Trends in\u00a0Explainable Artificial Intelligence"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9442-3439","authenticated-orcid":false,"given":"Isabel","family":"Carvalho","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5779-8645","authenticated-orcid":false,"given":"Hugo","family":"Gon\u00e7alo Oliveira","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5656-0061","authenticated-orcid":false,"given":"Catarina","family":"Silva","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,16]]},"reference":[{"key":"23_CR1","doi-asserted-by":"publisher","first-page":"52138","DOI":"10.1109\/ACCESS.2018.2870052","volume":"6","author":"A Adadi","year":"2018","unstructured":"Adadi, A., Berrada, M.: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI). IEEE access 6, 52138\u201352160 (2018)","journal-title":"IEEE access"},{"key":"23_CR2","unstructured":"Bastani, O., Kim, C., Bastani, H.: Interpretability via Model Extraction. arXiv preprint arXiv:1706.09773 (2017)"},{"key":"23_CR3","unstructured":"Bolukbasi, T., Chang, K.W., Zou, J.Y., Saligrama, V., Kalai, A.T.: Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"issue":"14","key":"23_CR4","first-page":"2732","volume":"34","author":"S Chowdhury","year":"2023","unstructured":"Chowdhury, S., Joel-Edgar, S., Dey, P.K., Bhattacharya, S., Kharlamov, A.: Embedding transparency in artificial intelligence machine learning models: managerial implications on predicting and explaining employee turnover. Int. J. Hum. Res. Manag. 34(14), 2732\u20132764 (2023)","journal-title":"Int. J. Hum. Res. Manag."},{"key":"23_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.cageo.2023.105364","volume":"176","author":"A Dahal","year":"2023","unstructured":"Dahal, A., Lombardo, L.: Explainable artificial intelligence in geoscience: a glimpse into the future of landslide susceptibility modeling. Comput. Geosci. 176, 105364 (2023)","journal-title":"Comput. Geosci."},{"key":"23_CR6","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2023.104358","volume":"156","author":"J Dong","year":"2023","unstructured":"Dong, J., Chen, S., Miralinaghi, M., Chen, T., Li, P., Labi, S.: Why did the AI make that decision? Towards an explainable artificial intelligence (XAI) for autonomous driving systems. Transp. Res. Part C Emerg. Technol. 156, 104358 (2023)","journal-title":"Transp. Res. Part C Emerg. Technol."},{"key":"23_CR7","doi-asserted-by":"crossref","unstructured":"Do\u0161ilovi\u0107, F.K., Br\u010di\u0107, M., Hlupi\u0107, N.: Explainable artificial intelligence: a survey. In: 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 0210\u20130215. IEEE (2018)","DOI":"10.23919\/MIPRO.2018.8400040"},{"issue":"9","key":"23_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3561048","volume":"55","author":"R Dwivedi","year":"2023","unstructured":"Dwivedi, R., et al.: Explainable AI (XAI): core ideas, techniques, and solutions. ACM Comput. Surv. 55(9), 1\u201333 (2023)","journal-title":"ACM Comput. Surv."},{"key":"23_CR9","doi-asserted-by":"crossref","unstructured":"DAngelo, G., Della-Morte, D., Pastore, D., Donadel, G., De\u00a0Stefano, A., Palmieri, F.: Identifying patterns in multiple biomarkers to diagnose diabetic foot using an explainable genetic programming-based approach. Future Gener. Comput. Syst. 140, 138\u2013150 (2023)","DOI":"10.1016\/j.future.2022.10.019"},{"issue":"1","key":"23_CR10","first-page":"1","volume":"19","author":"JH Friedman","year":"1991","unstructured":"Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1\u201367 (1991)","journal-title":"Ann. Stat."},{"key":"23_CR11","doi-asserted-by":"crossref","unstructured":"Friedman, J.H., Popescu, B.E.: Predictive learning via rule ensembles. Ann. Appl. Stat. 916\u2013954 (2008)","DOI":"10.1214\/07-AOAS148"},{"issue":"2","key":"23_CR12","doi-asserted-by":"publisher","first-page":"122","DOI":"10.3390\/info11020122","volume":"11","author":"G Futia","year":"2020","unstructured":"Futia, G., Vetr\u00f2, A.: On the integration of knowledge graphs into deep learning models for a more comprehensible AI three challenges for future research. Information 11(2), 122 (2020)","journal-title":"Information"},{"key":"23_CR13","doi-asserted-by":"crossref","unstructured":"Gurumoorthy, K.S., Dhurandhar, A., Cecchi, G., Aggarwal, C.: Efficient data representation by selecting prototypes with importance weights. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 260\u2013269. IEEE (2019)","DOI":"10.1109\/ICDM.2019.00036"},{"key":"23_CR14","doi-asserted-by":"crossref","unstructured":"Hickling, T., Aouf, N., Spencer, P.: Robust adversarial attacks detection based on explainable deep reinforcement learning for UAV guidance and planning. IEEE Trans. Intell. Veh. (2023)","DOI":"10.1109\/TIV.2023.3296227"},{"key":"23_CR15","series-title":"Social Sciences, Humanities and Literature","first-page":"88","volume-title":"Procs of 7th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage","author":"M In\u00e1cio","year":"2023","unstructured":"In\u00e1cio, M., Wick-pedro, G., Gon\u00e7alo Oliveira, H.: What do humor classifiers learn? An attempt to explain humor recognition models. In: Procs of 7th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage. Social Sciences, Humanities and Literature, pp. 88\u201398. ACL, Dubrovnik, Croatia (2023)"},{"key":"23_CR16","unstructured":"Islam, S.R., Eberle, W., Ghafoor, S.K., Ahmed, M.: Explainable artificial intelligence approaches: a survey. arXiv preprint arXiv:2101.09429 (2021)"},{"key":"23_CR17","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2023.119000","volume":"639","author":"M Keshk","year":"2023","unstructured":"Keshk, M., Koroniotis, N., Pham, N., Moustafa, N., Turnbull, B., Zomaya, A.Y.: An explainable deep learning-enabled intrusion detection framework in IoT networks. Inf. Sci. 639, 119000 (2023)","journal-title":"Inf. Sci."},{"key":"23_CR18","doi-asserted-by":"crossref","unstructured":"Kr\u00fcger, J.G.C., de\u00a0Souza Britto\u00a0Jr., A., Barddal, J.P.: An explainable machine learning approach for student dropout prediction. Expert Syst. Appl. 233, 120933 (2023)","DOI":"10.1016\/j.eswa.2023.120933"},{"key":"23_CR19","doi-asserted-by":"crossref","unstructured":"Letham, B., Rudin, C., McCormick, T.H., Madigan, D.: Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction model. Ann. Appl. Stat. 1350\u20131371 (2015)","DOI":"10.1214\/15-AOAS848"},{"key":"23_CR20","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2022.109642","volume":"183","author":"L Lomazzi","year":"2023","unstructured":"Lomazzi, L., Fabiano, S., Parziale, M., Giglio, M., Cadini, F.: On the explainability of convolutional neural networks processing ultrasonic guided waves for damage diagnosis. Mech. Syst. Signal Process. 183, 109642 (2023)","journal-title":"Mech. Syst. Signal Process."},{"key":"23_CR21","unstructured":"Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"23_CR22","unstructured":"Molnar, C.: Interpretable Machine Learning. Lulu. com, 2nd edn. (2020). https:\/\/christophm.github.io\/interpretable-ml-book\/"},{"key":"23_CR23","unstructured":"Narang, S., Raffel, C., Lee, K., Roberts, A., Fiedel, N., Malkan, K.: WT5?! training text-to-text models to explain their predictions. arXiv preprint arXiv:2004.14546 (2020)"},{"key":"23_CR24","unstructured":"O\u2019Neil, C.: Weapons of math destruction: how big data increases inequality and threatens democracy. Crown (2017)"},{"key":"23_CR25","doi-asserted-by":"crossref","unstructured":"Ribeiro, M.T., Singh, S., Guestrin, C.: \u201cwhy should i trust you?\u201d Explaining the predictions of any classifier. In: Proceedings of 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135\u20131144 (2016)","DOI":"10.1145\/2939672.2939778"},{"key":"23_CR26","doi-asserted-by":"publisher","unstructured":"Shapley, L.S.: A Value for n-Person Games, pp. 307\u2013318. Princeton University Press, Princeton (1953). https:\/\/doi.org\/10.1515\/9781400881970-018","DOI":"10.1515\/9781400881970-018"},{"key":"23_CR27","unstructured":"Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: Proceedings of International Conference on Learning Representations (ICLR). ICLR (2014)"},{"key":"23_CR28","unstructured":"Van\u00a0Eck, N.J., Waltman, L.: Text mining and visualization using vosviewer. arXiv preprint arXiv:1109.2058 (2011)"},{"issue":"12","key":"23_CR29","doi-asserted-by":"publisher","first-page":"5033","DOI":"10.1109\/TVCG.2022.3201101","volume":"29","author":"J Wang","year":"2022","unstructured":"Wang, J., et al.: When, where and how does it fail? A spatial-temporal visual analytics approach for interpretable object detection in autonomous driving. IEEE Trans. Visual Comput. Graphics 29(12), 5033\u20135049 (2022)","journal-title":"IEEE Trans. Visual Comput. Graphics"},{"issue":"3","key":"23_CR30","doi-asserted-by":"publisher","first-page":"1148","DOI":"10.1002\/ese3.1380","volume":"11","author":"Y Wang","year":"2023","unstructured":"Wang, Y., Wang, Z., Kang, X., Luo, Y.: A novel interpretable model ensemble multivariate fast iterative filtering and temporal fusion transform for carbon price forecasting. Energy Sci. Eng. 11(3), 1148\u20131179 (2023)","journal-title":"Energy Sci. Eng."},{"key":"23_CR31","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1016\/j.neunet.2023.01.025","volume":"161","author":"J Xing","year":"2023","unstructured":"Xing, J., Nagata, T., Zou, X., Neftci, E., Krichmar, J.L.: Achieving efficient interpretability of reinforcement learning via policy distillation and selective input gradient regularization. Neural Netw. 161, 228\u2013241 (2023)","journal-title":"Neural Netw."}],"container-title":["Lecture Notes in Computer Science","Progress in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73500-4_23","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,15]],"date-time":"2024-11-15T05:14:02Z","timestamp":1731647642000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73500-4_23"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,16]]},"ISBN":["9783031734991","9783031735004"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73500-4_23","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,11,16]]},"assertion":[{"value":"16 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EPIA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"EPIA Conference on Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Viana do Castelo","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portugal","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"23","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"epia2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/epia2024.pt","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}