{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:15:40Z","timestamp":1742912140540,"version":"3.40.3"},"publisher-location":"Cham","reference-count":65,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031734137"},{"type":"electronic","value":"9783031734144"}],"license":[{"start":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T00:00:00Z","timestamp":1729814400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T00:00:00Z","timestamp":1729814400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73414-4_15","type":"book-chapter","created":{"date-parts":[[2024,10,24]],"date-time":"2024-10-24T17:02:54Z","timestamp":1729789374000},"page":"253-270","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Finding Needles in\u00a0a\u00a0Haystack: A Black-Box Approach to\u00a0Invisible Watermark Detection"],"prefix":"10.1007","author":[{"given":"Minzhou","family":"Pan","sequence":"first","affiliation":[]},{"given":"Zhenting","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Dong","sequence":"additional","affiliation":[]},{"given":"Vikash","family":"Sehwag","sequence":"additional","affiliation":[]},{"given":"Lingjuan","family":"Lyu","sequence":"additional","affiliation":[]},{"given":"Xue","family":"Lin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,25]]},"reference":[{"key":"15_CR1","unstructured":"Stable Diffusion Image Variations. https:\/\/huggingface.co\/lambdalabs\/sd-image-variations-diffusers"},{"key":"15_CR2","unstructured":"(Dec 2023). https:\/\/www.europarl.europa.eu\/thinktank\/de\/document\/EPRS_BRI(2023)757583"},{"key":"15_CR3","unstructured":"(Oct 2023). https:\/\/www.whitehouse.gov\/briefing-room\/statements-releases\/2023\/10\/30\/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence\/"},{"key":"15_CR4","unstructured":"(Aug 2023). https:\/\/journal.everypixel.com\/ai-image-statistics"},{"key":"15_CR5","unstructured":"Midjourney v5 prompt dataset (2023). https:\/\/huggingface.co\/datasets\/tarungupta83\/MidJourney_v5_Prompt_dataset"},{"key":"15_CR6","unstructured":"(Jan 2024). https:\/\/leginfo.legislature.ca.gov\/faces\/billNavClient.xhtml?bill_id=202320240AB1824"},{"key":"15_CR7","unstructured":"(Feb 2024). https:\/\/photutorial.com\/midjourney-statistics\/"},{"key":"15_CR8","unstructured":"Achiam, J., et\u00a0al.: Gpt-4 technical report. arXiv preprint arXiv:2303.08774 (2023)"},{"key":"15_CR9","unstructured":"Alemohammad, S., et al.: Self-consuming generative models go mad (2023)"},{"key":"15_CR10","unstructured":"Arpit, D., et\u00a0al.: A closer look at memorization in deep networks. In: International Conference on Machine Learning, pp. 233\u2013242. PMLR (2017)"},{"key":"15_CR11","doi-asserted-by":"publisher","unstructured":"Bamatraf, A., Ibrahim, R., Salleh, M.N.B.M.: Digital watermarking algorithm using LSB. In: 2010 International Conference on Computer Applications and Industrial Electronics, pp. 155\u2013159 (2010). https:\/\/doi.org\/10.1109\/ICCAIE.2010.5735066","DOI":"10.1109\/ICCAIE.2010.5735066"},{"key":"15_CR12","doi-asserted-by":"publisher","unstructured":"Boland, F., O\u2019Ruanaidh, J., Dautzenberg, C.: Watermarking digital images for copyright protection. In: Fifth International Conference on Image Processing and its Applications, 1995, pp. 326\u2013330 (1995). https:\/\/doi.org\/10.1049\/cp:19950674","DOI":"10.1049\/cp:19950674"},{"issue":"5","key":"15_CR13","doi-asserted-by":"publisher","first-page":"1181","DOI":"10.1109\/TIFS.2018.2871749","volume":"14","author":"M Boroumand","year":"2018","unstructured":"Boroumand, M., Chen, M., Fridrich, J.: Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 14(5), 1181\u20131193 (2018)","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"key":"15_CR14","unstructured":"Byrnes, O., La, W., Wang, H., Ma, C., Xue, M., Wu, Q.: Data hiding with deep learning: a survey unifying digital watermarking and steganography. arXiv preprint arXiv:2107.09287 (2021)"},{"key":"15_CR15","unstructured":"Carlini, N., et al.: Extracting training data from diffusion models. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 5253\u20135270 (2023)"},{"issue":"10","key":"15_CR16","doi-asserted-by":"publisher","first-page":"1577","DOI":"10.1016\/j.patrec.2005.01.004","volume":"26","author":"CC Chang","year":"2005","unstructured":"Chang, C.C., Tsai, P., Lin, C.C.: SVD-based digital image watermarking scheme. Pattern Recogn. Lett. 26(10), 1577\u20131586 (2005)","journal-title":"Pattern Recogn. Lett."},{"key":"15_CR17","unstructured":"Cheetham, K.D., Joshua: fake trump arrest photos: how to spot an AI-generated image (2023). https:\/\/www.bbc.com\/news\/world-us-canada-65069316"},{"key":"15_CR18","doi-asserted-by":"publisher","unstructured":"Cheng, D., et al.: Large-scale visible watermark detection and removal with deep convolutional networks. In: Lai, J.-H., Liu, C.-L., Chen, X., Zhou, J., Tan, T., Zheng, N., Zha, H. (eds.) PRCV 2018. LNCS, vol. 11258, pp. 27\u201340. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-03338-5_3","DOI":"10.1007\/978-3-030-03338-5_3"},{"key":"15_CR19","doi-asserted-by":"publisher","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255 (2009). https:\/\/doi.org\/10.1109\/CVPR.2009.5206848","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"15_CR20","doi-asserted-by":"crossref","unstructured":"Fernandez, P., Couairon, G., J\u00e9gou, H., Douze, M., Furon, T.: The stable signature: Rooting watermarks in latent diffusion models. arXiv preprint arXiv:2303.15435 (2023)","DOI":"10.1109\/ICCV51070.2023.02053"},{"key":"15_CR21","unstructured":"Griffin, G., Holub, A., Perona, P.: Caltech-256 Object Category Dataset (2007)"},{"key":"15_CR22","doi-asserted-by":"crossref","unstructured":"He, X., Xu, Q., Lyu, L., Wu, F., Wang, C.: Protecting intellectual property of language generation APIS with lexical watermark. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a036, pp. 10758\u201310766 (2022)","DOI":"10.1609\/aaai.v36i10.21321"},{"key":"15_CR23","unstructured":"He, X., et al.: Cater: intellectual property protection on text generation Apis via conditional watermarks. Adv. Neural. Inf. Process. Syst. 35, 5431\u20135445 (2022)"},{"key":"15_CR24","first-page":"6840","volume":"33","author":"J Ho","year":"2020","unstructured":"Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840\u20136851 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"15_CR25","doi-asserted-by":"crossref","unstructured":"Jiang, Z., Zhang, J., Gong, N.Z.: Evading watermark based detection of AI-generated content. arXiv preprint arXiv:2305.03807 (2023)","DOI":"10.1145\/3576915.3623189"},{"key":"15_CR26","unstructured":"Just, H.A., et al.: Lava: data valuation without pre-specified learning algorithms. arXiv preprint arXiv:2305.00054 (2023)"},{"key":"15_CR27","doi-asserted-by":"crossref","unstructured":"Kheddar, H., Hemis, M., Himeur, Y., Meg\u00edas, D., Amira, A.: Deep learning for steganalysis of diverse data types: a review of methods, taxonomy, challenges and future directions. Neurocomputing 127528 (2024)","DOI":"10.1016\/j.neucom.2024.127528"},{"key":"15_CR28","unstructured":"Li, G., Chen, Y., Zhang, J., Li, J., Guo, S., Zhang, T.: Towards the vulnerability of watermarking artificial intelligence generated content. arXiv preprint arXiv:2310.07726 (2023)"},{"key":"15_CR29","unstructured":"Li, J., Li, D., Savarese, S., Hoi, S.: Blip-2: bootstrapping language-image pre-training with frozen image encoders and large language models. In: International Conference on Machine Learning, pp. 19730\u201319742. PMLR (2023)"},{"key":"15_CR30","unstructured":"Li, J., Li, D., Xiong, C., Hoi, S.: Blip: bootstrapping language-image pre-training for unified vision-language understanding and generation. In: International Conference on Machine Learning, pp. 12888\u201312900. PMLR (2022)"},{"key":"15_CR31","doi-asserted-by":"crossref","unstructured":"Li, Y., Li, Y., Wu, B., Li, L., He, R., Lyu, S.: Invisible backdoor attack with sample-specific triggers. In: IEEE International Conference on Computer Vision (ICCV) (2021)","DOI":"10.1109\/ICCV48922.2021.01615"},{"key":"15_CR32","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., et al.: Microsoft coco: common objects in context. In: ECCV 2014, Part V 13. pp. 740\u2013755. Springer (2014)","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"15_CR33","unstructured":"Lu, Z., Huang, D., Bai, L., Liu, X., Qu, J., Ouyang, W.: Seeing is not always believing: a quantitative study on human perception of AI-generated images. arXiv preprint arXiv:2304.13023 (2023)"},{"key":"15_CR34","unstructured":"Lukas, N., Diaa, A., Fenaux, L., Kerschbaum, F.: Leveraging optimization for adaptive attacks on image watermarks. arXiv preprint arXiv:2309.16952 (2023)"},{"key":"15_CR35","unstructured":"Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)"},{"key":"15_CR36","doi-asserted-by":"publisher","unstructured":"Navas, K.A., Ajay, M.C., Lekshmi, M., Archana, T.S., Sasikumar, M.: DWT-DCT-SVD based watermarking. In: 2008 3rd International Conference on Communication Systems Software and Middleware and Workshops (COMSWARE 2008), pp. 271\u2013274 (2008). https:\/\/doi.org\/10.1109\/COMSWA.2008.4554423","DOI":"10.1109\/COMSWA.2008.4554423"},{"key":"15_CR37","unstructured":"OpenAI. Watermark in dall$$\\cdot $$e 3 (2023). https:\/\/help.openai.com\/en\/articles\/8912793-c2pa-in-dall-e-3"},{"key":"15_CR38","doi-asserted-by":"crossref","unstructured":"O\u2019Ruanaidh, J.J., Pun, T.: Rotation, scale and translation invariant digital image watermarking. In: Proceedings of International Conference on Image Processing, vol.\u00a01, pp. 536\u2013539. IEEE (1997)","DOI":"10.1109\/ICIP.1997.647968"},{"key":"15_CR39","unstructured":"Pan, M., Zeng, Y., Lyu, L., Lin, X., Jia, R.: ASSET: robust backdoor data detection across a multiplicity of deep learning paradigms. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 2725\u20132742. USENIX Association, Anaheim (2023). https:\/\/www.usenix.org\/conference\/usenixsecurity23\/presentation\/pan"},{"key":"15_CR40","doi-asserted-by":"crossref","unstructured":"Peng, W., et al.: Are you copying my model? protecting the copyright of large language models for EAAS via backdoor watermark. In: The 61st Annual Meeting of the Association for Computational Linguistics (2023)","DOI":"10.18653\/v1\/2023.acl-long.423"},{"key":"15_CR41","unstructured":"Qi, X., Xie, T., Wang, J.T., Wu, T., Mahloujifar, S., Mittal, P.: Towards a proactive $$\\{$$ML$$\\}$$ approach for detecting backdoor poison samples. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 1685\u20131702 (2023)"},{"key":"15_CR42","doi-asserted-by":"crossref","unstructured":"Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684\u201310695 (2022)","DOI":"10.1109\/CVPR52688.2022.01042"},{"key":"15_CR43","unstructured":"Saberi, M., et al.: Robustness of AI-image detectors: Fundamental limits and practical attacks. arXiv preprint arXiv:2310.00076 (2023)"},{"key":"15_CR44","first-page":"27374","volume":"35","author":"P Sandoval-Segura","year":"2022","unstructured":"Sandoval-Segura, P., Singla, V., Geiping, J., Goldblum, M., Goldstein, T., Jacobs, D.: Autoregressive perturbations for data poisoning. Adv. Neural. Inf. Process. Syst. 35, 27374\u201327386 (2022)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"15_CR45","doi-asserted-by":"crossref","unstructured":"Santoyo-Garcia, H., Fragoso-Navarro, E., Reyes-Reyes, R., Sanchez-Perez, G., Nakano-Miyatake, M., Perez-Meana, H.: An automatic visible watermark detection method using total variation. In: 2017 5th International Workshop on Biometrics and Forensics (IWBF), pp.\u00a01\u20135. IEEE (2017)","DOI":"10.1109\/IWBF.2017.7935109"},{"key":"15_CR46","unstructured":"Schuhmann, C., et al.: Laion-5b: an open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 35, 25278\u201325294 (2022)"},{"key":"15_CR47","unstructured":"Shan, S., Cryan, J., Wenger, E., Zheng, H., Hanocka, R., Zhao, B.Y.: Glaze: protecting artists from style mimicry by $$\\{$$Text-to-Image$$\\}$$ models. In: 32nd USENIX Security Symposium (USENIX Security 23), pp. 2187\u20132204 (2023)"},{"key":"15_CR48","doi-asserted-by":"publisher","unstructured":"Singh, H.K., Singh, A.K.: Comprehensive review of watermarking techniques in deep-learning environments. J. Electron. Imaging 32(03) (2022). https:\/\/doi.org\/10.1117\/1.jei.32.3.031804","DOI":"10.1117\/1.jei.32.3.031804"},{"key":"15_CR49","unstructured":"Sohn, K., Li, C.L., Yoon, J., Jin, M., Pfister, T.: Learning and evaluating representations for deep one-class classification. arXiv preprint arXiv:2011.02578 (2020)"},{"key":"15_CR50","unstructured":"Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint arXiv:2010.02502 (2020)"},{"key":"15_CR51","doi-asserted-by":"crossref","unstructured":"Tancik, M., Mildenhall, B., Ng, R.: Stegastamp: invisible hyperlinks in physical photographs. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2117\u20132126 (2020)","DOI":"10.1109\/CVPR42600.2020.00219"},{"key":"15_CR52","unstructured":"Villalobos, P., Sevilla, J., Heim, L., Besiroglu, T., Hobbhahn, M., Ho, A.: Will we run out of data? an analysis of the limits of scaling datasets in machine learning. arXiv preprint arXiv:2211.04325 (2022)"},{"key":"15_CR53","unstructured":"Wang, Z., Chen, C., Lyu, L., Metaxas, D.N., Ma, S.: Diagnosis: detecting unauthorized data usages in text-to-image diffusion models. In: The Twelfth International Conference on Learning Representations (2024)"},{"key":"15_CR54","unstructured":"Wang, Z., Chen, C., Zeng, Y., Lyu, L., Ma, S.: Where did i come from? origin attribution of AI-generated images. Adv. Neural Inf. Process. Syst. 36 (2024)"},{"key":"15_CR55","unstructured":"Wang, Z., Sehwag, V., Chen, C., Lyu, L., Metaxas, D.N., Ma, S.: How to trace latent generative model generated images without artificial watermark? arXiv preprint arXiv:2405.13360 (2024)"},{"key":"15_CR56","doi-asserted-by":"crossref","unstructured":"Wang, Z.J., Montoya, E., Munechika, D., Yang, H., Hoover, B., Chau, D.H.: Diffusiondb: a large-scale prompt gallery dataset for text-to-image generative models. arXiv preprint arXiv:2210.14896 (2022)","DOI":"10.18653\/v1\/2023.acl-long.51"},{"key":"15_CR57","unstructured":"Wen, Y., Kirchenbauer, J., Geiping, J., Goldstein, T.: Tree-ring watermarks: fingerprints for diffusion images that are invisible and robust. arXiv preprint arXiv:2305.20030 (2023)"},{"key":"15_CR58","doi-asserted-by":"crossref","unstructured":"Woo, S., et al.: Convnext v2: co-designing and scaling convnets with masked autoencoders. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16133\u201316142 (2023)","DOI":"10.1109\/CVPR52729.2023.01548"},{"key":"15_CR59","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107706","volume":"112","author":"V Zavrtanik","year":"2021","unstructured":"Zavrtanik, V., Kristan, M., Sko\u010daj, D.: Reconstruction by inpainting for visual anomaly detection. Pattern Recogn. 112, 107706 (2021)","journal-title":"Pattern Recogn."},{"key":"15_CR60","doi-asserted-by":"crossref","unstructured":"Zeng, Y., Park, W., Mao, Z.M., Jia, R.: Rethinking the backdoor attacks\u2019 triggers: a frequency perspective. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 16473\u201316481 (2021)","DOI":"10.1109\/ICCV48922.2021.01616"},{"key":"15_CR61","doi-asserted-by":"crossref","unstructured":"Zhai, X., Kolesnikov, A., Houlsby, N., Beyer, L.: Scaling vision transformers. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 12104\u201312113 (2022)","DOI":"10.1109\/CVPR52688.2022.01179"},{"key":"15_CR62","unstructured":"Zhang, C., Lin, C., Benz, P., Chen, K., Zhang, W., Kweon, I.S.: A brief survey on deep learning based data hiding. arXiv preprint arXiv:2103.01607 (2021)"},{"key":"15_CR63","unstructured":"Zhao, X., et al.: Invisible image watermarks are provably removable using generative AI (2023)"},{"key":"15_CR64","doi-asserted-by":"crossref","unstructured":"Zhong, X., Das, A., Alrasheedi, F., Tanvir, A.: Deep learning based image watermarking: a brief survey. arXiv preprint arXiv:2308.04603 (2023)","DOI":"10.3390\/app132111852"},{"key":"15_CR65","doi-asserted-by":"crossref","unstructured":"Zhu, J., Kaplan, R., Johnson, J., Fei-Fei, L.: Hidden: hiding data with deep networks. In: Proceedings of the European conference on computer vision (ECCV), pp. 657\u2013672 (2018)","DOI":"10.1007\/978-3-030-01267-0_40"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73414-4_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,24]],"date-time":"2024-10-24T17:08:40Z","timestamp":1729789720000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73414-4_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,25]]},"ISBN":["9783031734137","9783031734144"],"references-count":65,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73414-4_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,10,25]]},"assertion":[{"value":"25 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}