{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T04:09:41Z","timestamp":1730606981717,"version":"3.28.0"},"publisher-location":"Cham","reference-count":67,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031733826","type":"print"},{"value":"9783031733833","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73383-3_7","type":"book-chapter","created":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T12:02:35Z","timestamp":1730548955000},"page":"108-126","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["GS-Pose: Category-Level Object Pose Estimation via\u00a0Geometric and\u00a0Semantic Correspondence"],"prefix":"10.1007","author":[{"given":"Pengyuan","family":"Wang","sequence":"first","affiliation":[]},{"given":"Takuya","family":"Ikeda","sequence":"additional","affiliation":[]},{"given":"Robert","family":"Lee","sequence":"additional","affiliation":[]},{"given":"Koichi","family":"Nishiwaki","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,3]]},"reference":[{"key":"7_CR1","unstructured":"Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv abs\/1512.03012 (2015). https:\/\/api.semanticscholar.org\/CorpusID:2554264"},{"key":"7_CR2","doi-asserted-by":"crossref","unstructured":"Chen, D., Li, J., Xu, K.: Learning canonical shape space for category-level 6D object pose and size estimation. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11970\u201311979 (2020). https:\/\/api.semanticscholar.org\/CorpusID:210919925","DOI":"10.1109\/CVPR42600.2020.01199"},{"key":"7_CR3","doi-asserted-by":"crossref","unstructured":"Chen, K., Dou, Q.: SGPA: structure-guided prior adaptation for category-level 6D object pose estimation. In: IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 2773\u20132782 (2021)","DOI":"10.1109\/ICCV48922.2021.00277"},{"key":"7_CR4","doi-asserted-by":"crossref","unstructured":"Chen, W., Jia, X., Chang, H.J., Duan, J., Shen, L., Leonardis, A.: FS-Net: fast shape-based network for category-level 6d object pose estimation with decoupled rotation mechanism. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1581\u20131590 (2021)","DOI":"10.1109\/CVPR46437.2021.00163"},{"key":"7_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1007\/978-3-030-58574-7_9","volume-title":"Computer Vision \u2013 ECCV 2020","author":"X Chen","year":"2020","unstructured":"Chen, X., Dong, Z., Song, J., Geiger, A., Hilliges, O.: Category level object pose estimation via neural analysis-by-synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 139\u2013156. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58574-7_9"},{"key":"7_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"620","DOI":"10.1007\/978-3-030-01228-1_37","volume-title":"Computer Vision \u2013 ECCV 2018","author":"H Deng","year":"2018","unstructured":"Deng, H., Birdal, T., Ilic, S.: PPF-FoldNet: unsupervised learning of rotation invariant 3D local descriptors. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 620\u2013638. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01228-1_37"},{"key":"7_CR7","doi-asserted-by":"crossref","unstructured":"Deng, H., Birdal, T., Ilic, S.: PPFNet: global context aware local features for robust 3D point matching. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 195\u2013205 (2018)","DOI":"10.1109\/CVPR.2018.00028"},{"key":"7_CR8","doi-asserted-by":"crossref","unstructured":"Di, Y., et al.: GPV-Pose: category-level object pose estimation via geometry-guided point-wise voting. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6781\u20136791 (2022)","DOI":"10.1109\/CVPR52688.2022.00666"},{"key":"7_CR9","unstructured":"Fan, Z., et al.: ACR-Pose: adversarial canonical representation reconstruction network for category level 6D object pose estimation. arXiv preprint arXiv:2111.10524 (2021)"},{"key":"7_CR10","doi-asserted-by":"crossref","unstructured":"Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381\u2013395 (1981). https:\/\/api.semanticscholar.org\/CorpusID:972888","DOI":"10.1145\/358669.358692"},{"key":"7_CR11","doi-asserted-by":"publisher","unstructured":"Gao, D., et al.: Polarimetric pose prediction. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds) Computer Vision \u2013 ECCV 2022. ECCV 2022. LNCS, vol. 13669, pp. 735\u2013752. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-20077-9_43","DOI":"10.1007\/978-3-031-20077-9_43"},{"key":"7_CR12","doi-asserted-by":"crossref","unstructured":"Gao, G., Lauri, M., Wang, Y., Hu, X., Zhang, J., Frintrop, S.: 6D object pose regression via supervised learning on point clouds. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3643\u20133649. IEEE (2020)","DOI":"10.1109\/ICRA40945.2020.9197461"},{"key":"7_CR13","doi-asserted-by":"crossref","unstructured":"Gao, G., Lauri, M., Wang, Y., Hu, X., Zhang, J., Frintrop, S.: 6D object pose regression via supervised learning on point clouds. In: International Conference on Robotics and Automation (ICRA), pp. 3643\u20133649 (2020). https:\/\/api.semanticscholar.org\/CorpusID:210911622","DOI":"10.1109\/ICRA40945.2020.9197461"},{"key":"7_CR14","unstructured":"Goodwin, W., Havoutis, I., Posner, I.: You only look at one: category-level object representations for pose estimation from a single example. arXiv preprint arXiv:2305.12626 (2023)"},{"key":"7_CR15","doi-asserted-by":"publisher","unstructured":"Goodwin, W., Vaze, S., Havoutis, I., Posner, I.: Zero-shot category-level object pose estimation. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision \u2013 ECCV 2022. ECCV 2022. LNCS, vol. 13699, pp. 516\u2013532. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-19842-7_30","DOI":"10.1007\/978-3-031-19842-7_30"},{"key":"7_CR16","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"He, Y., Huang, H., Fan, H., Chen, Q., Sun, J.: FFB6D: a full flow bidirectional fusion network for 6D pose estimation. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3003\u20133013 (2021)","DOI":"10.1109\/CVPR46437.2021.00302"},{"key":"7_CR18","doi-asserted-by":"crossref","unstructured":"He, Y., Sun, W., Huang, H., Liu, J., Fan, H., Sun, J.: PVN3D: a deep point-wise 3D keypoints voting network for 6DoF pose estimation. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11632\u201311641 (2020)","DOI":"10.1109\/CVPR42600.2020.01165"},{"key":"7_CR19","doi-asserted-by":"crossref","unstructured":"Hodan, T., Barath, D., Matas, J.: EPOS: estimating 6D pose of objects with symmetries. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11703\u201311712. IEEE, June 2020","DOI":"10.1109\/CVPR42600.2020.01172"},{"key":"7_CR20","doi-asserted-by":"crossref","unstructured":"Irshad, M.Z., Kollar, T., Laskey, M., Stone, K., Kira, Z.: CenterSnap: single-shot multi-object 3D shape reconstruction and categorical 6D pose and size estimation. In: International Conference on Robotics and Automation (ICRA), pp. 10632\u201310640. IEEE (2022)","DOI":"10.1109\/ICRA46639.2022.9811799"},{"issue":"3","key":"7_CR21","doi-asserted-by":"publisher","first-page":"971","DOI":"10.1109\/TCDS.2021.3086011","volume":"14","author":"M Karnati","year":"2021","unstructured":"Karnati, M., Seal, A., Yazidi, A., Krejcar, O.: LieNet: a deep convolution neural network framework for detecting deception. IEEE Trans. Cogn. Dev. Syst. 14(3), 971\u2013984 (2021)","journal-title":"IEEE Trans. Cogn. Dev. Syst."},{"key":"7_CR22","doi-asserted-by":"crossref","unstructured":"Kehl, W., Manhardt, F., Tombari, F., Ilic, S., Navab, N.: SSD-6D: making RGB-based 3D detection and 6D pose estimation great again. IEEE International Conference on Computer Vision (ICCV), pp. 1530\u20131538 (2017). https:\/\/api.semanticscholar.org\/CorpusID:10655945","DOI":"10.1109\/ICCV.2017.169"},{"key":"7_CR23","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"574","DOI":"10.1007\/978-3-030-58520-4_34","volume-title":"Computer Vision \u2013 ECCV 2020","author":"Y Labb\u00e9","year":"2020","unstructured":"Labb\u00e9, Y., Carpentier, J., Aubry, M., Sivic, J.: CosyPose: consistent multi-view multi-object 6D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 574\u2013591. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58520-4_34"},{"key":"7_CR24","doi-asserted-by":"crossref","unstructured":"Lee, T., et al.: UDA-COPE: unsupervised domain adaptation for category-level object pose estimation. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14891\u201314900 (2022)","DOI":"10.1109\/CVPR52688.2022.01447"},{"key":"7_CR25","doi-asserted-by":"crossref","unstructured":"Lee, T., et al.: TTA-COPE: test-time adaptation for category-level object pose estimation. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21285\u201321295 (2023)","DOI":"10.1109\/CVPR52729.2023.02039"},{"key":"7_CR26","first-page":"15370","volume":"34","author":"X Li","year":"2021","unstructured":"Li, X., et al.: Leveraging SE(3) equivariance for self-supervised category-level object pose estimation from point clouds. Adv. Neural. Inf. Process. Syst. 34, 15370\u201315381 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"7_CR27","doi-asserted-by":"crossref","unstructured":"Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: DeepIM: deep iterative matching for 6D pose estimation. In: European Conference on Computer Vision (ECCV), pp. 683\u2013698 (2018)","DOI":"10.1007\/978-3-030-01231-1_42"},{"key":"7_CR28","doi-asserted-by":"crossref","unstructured":"Li, Z., Wang, G., Ji, X.: CDPN: coordinates-based disentangled pose network for real-time RGB-based 6-DoF object pose estimation. In: IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 7678\u20137687 (2019)","DOI":"10.1109\/ICCV.2019.00777"},{"key":"7_CR29","first-page":"16779","volume":"34","author":"J Lin","year":"2021","unstructured":"Lin, J., Li, H., Chen, K., Lu, J., Jia, K.: Sparse steerable convolutions: an efficient learning of SE(3)-equivariant features for estimation and tracking of object poses in 3D space. Adv. Neural. Inf. Process. Syst. 34, 16779\u201316790 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"7_CR30","doi-asserted-by":"publisher","unstructured":"Lin, J., Wei, Z., Ding, C., Jia, K.: Category-level 6D object pose and size estimation using self-supervised deep prior deformation networks. In: Avidan, S., Brostow, G., Ciss\u00e9, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision (ECCV). LNCS, vol. 13669, pp. 19\u201334. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-20077-9_2","DOI":"10.1007\/978-3-031-20077-9_2"},{"key":"7_CR31","doi-asserted-by":"crossref","unstructured":"Lin, J., Wei, Z., Li, Z., Xu, S., Jia, K., Li, Y.: DualPoseNet: category-level 6D object pose and size estimation using dual pose network with refined learning of pose consistency. In: IEEE\/CVF International Conference on Computer Vision (CVPR), pp. 3560\u20133569 (2021)","DOI":"10.1109\/ICCV48922.2021.00354"},{"key":"7_CR32","doi-asserted-by":"crossref","unstructured":"Lin, J., Wei, Z., Zhang, Y., Jia, K.: VI-Net: boosting category-level 6D object pose estimation via learning decoupled rotations on the spherical representations. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 14001\u201314011 (2023)","DOI":"10.1109\/ICCV51070.2023.01287"},{"key":"7_CR33","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., Goyal, P., Girshick, R.B., He, K., Doll\u00e1r, P.: Focal loss for dense object detection. In: IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 2999\u20133007 (2017). https:\/\/api.semanticscholar.org\/CorpusID:47252984","DOI":"10.1109\/ICCV.2017.324"},{"key":"7_CR34","doi-asserted-by":"crossref","unstructured":"Lindenberger, P., Sarlin, P.E., Pollefeys, M.: LightGlue: local feature matching at light speed. arXiv preprint arXiv:2306.13643 (2023)","DOI":"10.1109\/ICCV51070.2023.01616"},{"key":"7_CR35","doi-asserted-by":"publisher","unstructured":"Liu, X., Wang, G., Li, Y., Ji, X.: CATRE: iterative point clouds alignment for category-level object pose refinement. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) European Conference on Computer Vision (ECCV), pp. 499\u2013516. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-20086-1_29","DOI":"10.1007\/978-3-031-20086-1_29"},{"key":"7_CR36","unstructured":"Manhardt, F., et al: CPS++: improving class-level 6D pose and shape estimation from monocular images with self-supervised learning. arXiv preprint arXiv:2003.05848 (2020)"},{"key":"7_CR37","unstructured":"Mann, B., et\u00a0al.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165 (2020)"},{"key":"7_CR38","unstructured":"Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv:abs\/2304.07193 (2023). https:\/\/api.semanticscholar.org\/CorpusID:258170077"},{"key":"7_CR39","doi-asserted-by":"crossref","unstructured":"Pan, P., Fan, Z., Feng, B.Y., Wang, P., Li, C., Wang, Z.: Learning to estimate 6DoF pose from limited data: a few-shot, generalizable approach using RGB images. arXiv preprint arXiv:2306.07598 (2023)","DOI":"10.1109\/3DV62453.2024.00078"},{"key":"7_CR40","doi-asserted-by":"crossref","unstructured":"Park, K., Patten, T., Vincze, M.: Pix2Pose: pixel-wise coordinate regression of objects for 6D pose estimation. In: IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 7668\u20137677 (2019)","DOI":"10.1109\/ICCV.2019.00776"},{"key":"7_CR41","doi-asserted-by":"crossref","unstructured":"Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6DoF pose estimation. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4561\u20134570 (2019)","DOI":"10.1109\/CVPR.2019.00469"},{"key":"7_CR42","unstructured":"Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652\u2013660 (2017)"},{"key":"7_CR43","doi-asserted-by":"crossref","unstructured":"Qin, Z., Yu, H., Wang, C., Guo, Y., Peng, Y., Xu, K.: Geometric transformer for fast and robust point cloud registration. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11143\u201311152 (2022)","DOI":"10.1109\/CVPR52688.2022.01086"},{"key":"7_CR44","doi-asserted-by":"crossref","unstructured":"Rad, M., Lepetit, V.: BB8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3828\u20133836 (2017)","DOI":"10.1109\/ICCV.2017.413"},{"key":"7_CR45","unstructured":"Radford, A., et\u00a0al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748\u20138763. PMLR (2021)"},{"key":"7_CR46","doi-asserted-by":"crossref","unstructured":"Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4938\u20134947 (2020)","DOI":"10.1109\/CVPR42600.2020.00499"},{"key":"7_CR47","doi-asserted-by":"crossref","unstructured":"Song, C., Song, J., Huang, Q.: HybridPose: 6D object pose estimation under hybrid representations. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 431\u2013440 (2020)","DOI":"10.1109\/CVPR42600.2020.00051"},{"key":"7_CR48","doi-asserted-by":"crossref","unstructured":"Song, S., Lichtenberg, S.P., Xiao, J.: Sun RGB-D: a RGB-D scene understanding benchmark suite. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 567\u2013576 (2015). https:\/\/api.semanticscholar.org\/CorpusID:6242669","DOI":"10.1109\/CVPR.2015.7298655"},{"key":"7_CR49","doi-asserted-by":"crossref","unstructured":"Sundermeyer, M., Marton, Z.C., Durner, M., Brucker, M., Triebel, R.: Implicit 3D orientation learning for 6d object detection from RGB images. In: European Conference on Computer Vision (ECCV), pp. 699\u2013715 (2018)","DOI":"10.1007\/978-3-030-01231-1_43"},{"key":"7_CR50","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"530","DOI":"10.1007\/978-3-030-58589-1_32","volume-title":"Computer Vision \u2013 ECCV 2020","author":"M Tian","year":"2020","unstructured":"Tian, M., Ang, M.H., Lee, G.H.: Shape prior deformation for categorical 6D object pose and size estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 530\u2013546. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58589-1_32"},{"key":"7_CR51","doi-asserted-by":"crossref","unstructured":"Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 376\u2013380 (1991). https:\/\/api.semanticscholar.org\/CorpusID:206421766","DOI":"10.1109\/34.88573"},{"key":"7_CR52","doi-asserted-by":"crossref","unstructured":"Wang, C., et al.: DenseFusion: 6D object pose estimation by iterative dense fusion. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3343\u20133352 (2019)","DOI":"10.1109\/CVPR.2019.00346"},{"key":"7_CR53","doi-asserted-by":"crossref","unstructured":"Wang, G., Manhardt, F., Shao, J., Ji, X., Navab, N., Tombari, F.: Self6D: self-supervised monocular 6D object pose estimation. In: European Conference on Computer Vision (ECCV) abs\/2004.06468 (2020). https:\/\/api.semanticscholar.org\/CorpusID:215754192","DOI":"10.1007\/978-3-030-58452-8_7"},{"key":"7_CR54","doi-asserted-by":"crossref","unstructured":"Wang, G., Manhardt, F., Tombari, F., Ji, X.: GDR-Net: geometry-guided direct regression network for monocular 6D object pose estimation. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16611\u201316621 (2021)","DOI":"10.1109\/CVPR46437.2021.01634"},{"key":"7_CR55","doi-asserted-by":"crossref","unstructured":"Wang, H., Sridhar, S., Huang, J., Valentin, J.P.C., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2637\u20132646 (2019). https:\/\/api.semanticscholar.org\/CorpusID:57761160","DOI":"10.1109\/CVPR.2019.00275"},{"key":"7_CR56","doi-asserted-by":"crossref","unstructured":"Wang, J., Chen, K., Dou, Q.: Category-level 6D object pose estimation via cascaded relation and recurrent reconstruction networks. In: 2021 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4807\u20134814. IEEE (2021)","DOI":"10.1109\/IROS51168.2021.9636212"},{"key":"7_CR57","unstructured":"Wang, P., Garattoni, L., Meier, S., Navab, N., Busam, B.: CroCPS: addressing photometric challenges in self-supervised category-level 6D object poses with cross-modal learning. In: British Machine Vision Conference (2022). https:\/\/api.semanticscholar.org\/CorpusID:256903232"},{"key":"7_CR58","doi-asserted-by":"crossref","unstructured":"Wang, P., et al.: PhoCaL: a multi-modal dataset for category-level object pose estimation with photometrically challenging objects. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21222\u201321231 (2022)","DOI":"10.1109\/CVPR52688.2022.02054"},{"key":"7_CR59","doi-asserted-by":"crossref","unstructured":"Wang, P., et al.: DemoGrasp: few-shot learning for robotic grasping with human demonstration. In: IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5733\u20135740. IEEE (2021)","DOI":"10.1109\/IROS51168.2021.9636856"},{"key":"7_CR60","doi-asserted-by":"crossref","unstructured":"Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: PoseCNN: a convolutional neural network for 6D object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)","DOI":"10.15607\/RSS.2018.XIV.019"},{"key":"7_CR61","doi-asserted-by":"crossref","unstructured":"Xu, Y., Lin, K.Y., Zhang, G., Wang, X., Li, H.: RNNPose: recurrent 6-DoF object pose refinement with robust correspondence field estimation and pose optimization. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14880\u201314890. IEEE, June 2022","DOI":"10.1109\/CVPR52688.2022.01446"},{"key":"7_CR62","doi-asserted-by":"crossref","unstructured":"You, Y., He, W., Liu, J., Xiong, H., Wang, W., Lu, C.: CPPF++: uncertainty-aware Sim2Real object pose estimation by vote aggregation. IEEE Trans. Pattern Anal. Mach. Intell. (2024)","DOI":"10.1109\/TPAMI.2024.3419038"},{"key":"7_CR63","doi-asserted-by":"crossref","unstructured":"You, Y., Shi, R., Wang, W., Lu, C.: CPPF: towards robust category-level 9D pose estimation in the wild. In: IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6856\u20136865 (2022). https:\/\/api.semanticscholar.org\/CorpusID:247291938","DOI":"10.1109\/CVPR52688.2022.00674"},{"key":"7_CR64","doi-asserted-by":"crossref","unstructured":"Zakharov, S., Shugurov, I., Ilic, S.: DPOD: 6D pose object detector and refiner. In: IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 1941\u20131950 (2019)","DOI":"10.1109\/ICCV.2019.00203"},{"key":"7_CR65","first-page":"27469","volume":"35","author":"Y Ze","year":"2022","unstructured":"Ze, Y., Wang, X.: Category-level 6D object pose estimation in the wild: a semi-supervised learning approach and a new dataset. Adv. Neural. Inf. Process. Syst. 35, 27469\u201327483 (2022)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"7_CR66","doi-asserted-by":"crossref","unstructured":"Zhang, R., et al.: RBP-Pose: residual bounding box projection for category-level pose estimation. arXiv:abs\/2208.00237 (2022). https:\/\/api.semanticscholar.org\/CorpusID:251223949","DOI":"10.1007\/978-3-031-19769-7_38"},{"key":"7_CR67","doi-asserted-by":"crossref","unstructured":"Zhao, C., Hu, Y., Salzmann, M.: Fusing local similarities for retrieval-based 3D orientation estimation of unseen objects. arXiv:abs\/2203.08472 (2022). https:\/\/api.semanticscholar.org\/CorpusID:247475898","DOI":"10.1007\/978-3-031-19769-7_7"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73383-3_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T12:05:42Z","timestamp":1730549142000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73383-3_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,3]]},"ISBN":["9783031733826","9783031733833"],"references-count":67,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73383-3_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,3]]},"assertion":[{"value":"3 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}