{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T04:09:33Z","timestamp":1730606973415,"version":"3.28.0"},"publisher-location":"Cham","reference-count":54,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031733826","type":"print"},{"value":"9783031733833","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,3]],"date-time":"2024-11-03T00:00:00Z","timestamp":1730592000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73383-3_16","type":"book-chapter","created":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T12:03:44Z","timestamp":1730549024000},"page":"270-287","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Cross-Platform Video Person ReID: A New Benchmark Dataset and\u00a0Adaptation Approach"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5914-7109","authenticated-orcid":false,"given":"Shizhou","family":"Zhang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0000-5439-2749","authenticated-orcid":false,"given":"Wenlong","family":"Luo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1932-4390","authenticated-orcid":false,"given":"De","family":"Cheng","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0005-2822-2443","authenticated-orcid":false,"given":"Qingchun","family":"Yang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3084-9860","authenticated-orcid":false,"given":"Lingyan","family":"Ran","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6021-8261","authenticated-orcid":false,"given":"Yinghui","family":"Xing","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2977-8057","authenticated-orcid":false,"given":"Yanning","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,3]]},"reference":[{"key":"16_CR1","doi-asserted-by":"crossref","unstructured":"Aich, A., Zheng, M., Karanam, S., Chen, T., Roy-Chowdhury, A.K., Wu, Z.: Spatio-temporal representation factorization for video-based person re-identification. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 152\u2013162 (2021)","DOI":"10.1109\/ICCV48922.2021.00022"},{"key":"16_CR2","doi-asserted-by":"crossref","unstructured":"Bai, S., Ma, B., Chang, H., Huang, R., Chen, X.: Salient-to-broad transition for video person re-identification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7339\u20137348 (2022)","DOI":"10.1109\/CVPR52688.2022.00719"},{"key":"16_CR3","doi-asserted-by":"crossref","unstructured":"Baltieri, D., Vezzani, R., Cucchiara, R.: 3dpes: 3d people dataset for surveillance and forensics. In: Joint Acm Workshop on Human Gesture & Behavior Understanding (2011)","DOI":"10.1145\/2072572.2072590"},{"key":"16_CR4","doi-asserted-by":"crossref","unstructured":"Chao, H., He, Y., Zhang, J., Feng, J.: Gaitset: regarding gait as a set for cross-view gait recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a033, pp. 8126\u20138133 (2019)","DOI":"10.1609\/aaai.v33i01.33018126"},{"key":"16_CR5","doi-asserted-by":"crossref","unstructured":"Chen, D., Li, H., Xiao, T., Yi, S., Wang, X.: Video person re-identification with competitive snippet-similarity aggregation and co-attentive snippet embedding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1169\u20131178 (2018)","DOI":"10.1109\/CVPR.2018.00128"},{"key":"16_CR6","doi-asserted-by":"crossref","unstructured":"Chen, G., Rao, Y., Lu, J., Zhou, J.: Temporal coherence or temporal motion: Which is more critical for video-based person re-identification? In: Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part VIII 16, pp. 660\u2013676. Springer (2020)","DOI":"10.1007\/978-3-030-58598-3_39"},{"key":"16_CR7","doi-asserted-by":"crossref","unstructured":"Cheng, D., He, L., Wang, N., Zhang, S., Wang, Z., Gao, X.: Efficient bilateral cross-modality cluster matching for unsupervised visible-infrared person reid. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 1325\u20131333 (2023)","DOI":"10.1145\/3581783.3612073"},{"key":"16_CR8","doi-asserted-by":"crossref","unstructured":"Cheng, D., et al.: Continual all-in-one adverse weather removal with knowledge replay on a unified network structure. IEEE Trans. Multimed. (2024)","DOI":"10.1109\/TMM.2024.3377136"},{"key":"16_CR9","doi-asserted-by":"publisher","first-page":"3334","DOI":"10.1109\/TIP.2022.3169693","volume":"31","author":"D Cheng","year":"2022","unstructured":"Cheng, D., Zhou, J., Wang, N., Gao, X.: Hybrid dynamic contrast and probability distillation for unsupervised person re-id. IEEE Trans. Image Process. 31, 3334\u20133346 (2022). https:\/\/doi.org\/10.1109\/TIP.2022.3169693","journal-title":"IEEE Trans. Image Process."},{"key":"16_CR10","doi-asserted-by":"crossref","unstructured":"Chung, D., Tahboub, K., Delp, E.J.: A two stream siamese convolutional neural network for person re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1983\u20131991 (2017)","DOI":"10.1109\/ICCV.2017.218"},{"key":"16_CR11","unstructured":"Dosovitskiy, A., et\u00a0al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"key":"16_CR12","doi-asserted-by":"publisher","unstructured":"Eom, C., Lee, G., Lee, J., Ham, B.: Video-based person re-identification with spatial and temporal memory networks. In: 2021 IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 12016\u201312025 (2021). https:\/\/doi.org\/10.1109\/ICCV48922.2021.01182","DOI":"10.1109\/ICCV48922.2021.01182"},{"key":"16_CR13","doi-asserted-by":"crossref","unstructured":"Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933\u20131941 (2016)","DOI":"10.1109\/CVPR.2016.213"},{"key":"16_CR14","doi-asserted-by":"crossref","unstructured":"Fu, Y., Wang, X., Wei, Y., Huang, T.: Sta: spatial-temporal attention for large-scale video-based person re-identification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a033, pp. 8287\u20138294 (2019)","DOI":"10.1609\/aaai.v33i01.33018287"},{"key":"16_CR15","doi-asserted-by":"crossref","unstructured":"Gu, X., Chang, H., Ma, B., Zhang, H., Chen, X.: Appearance-preserving 3d convolution for video-based person re-identification. In: Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part II 16, pp. 228\u2013243. Springer (2020)","DOI":"10.1007\/978-3-030-58536-5_14"},{"key":"16_CR16","doi-asserted-by":"crossref","unstructured":"He, S., Luo, H., Wang, P., Wang, F., Li, H., Jiang, W.: Transreid: transformer-based object re-identification. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 15013\u201315022 (October 2021)","DOI":"10.1109\/ICCV48922.2021.01474"},{"key":"16_CR17","doi-asserted-by":"crossref","unstructured":"He, T., Jin, X., Shen, X., Huang, J., Chen, Z., Hua, X.S.: Dense interaction learning for video-based person re-identification. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 1490\u20131501 (2021)","DOI":"10.1109\/ICCV48922.2021.00152"},{"key":"16_CR18","doi-asserted-by":"crossref","unstructured":"Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person re-identification by descriptive and discriminative classification. In: Image Analysis: 17th Scandinavian Conference, SCIA 2011, Ystad, Sweden, May 2011. Proceedings 17, pp. 91\u2013102. Springer (2011)","DOI":"10.1007\/978-3-642-21227-7_9"},{"key":"16_CR19","doi-asserted-by":"crossref","unstructured":"Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., Chen, X.: Vrstc: occlusion-free video person re-identification. In: CVPR, pp. 7183\u20137192 (2019)","DOI":"10.1109\/CVPR.2019.00735"},{"key":"16_CR20","doi-asserted-by":"crossref","unstructured":"Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., Chen, X.: Temporal complementary learning for video person re-identification. In: ECCV, pp. 388\u2013405 (2020)","DOI":"10.1007\/978-3-030-58595-2_24"},{"key":"16_CR21","doi-asserted-by":"crossref","unstructured":"Hou, R., Chang, H., Ma, B., Huang, R., Shan, S.: Bicnet-tks: learning efficient spatial-temporal representation for video person re-identification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2014\u20132023, June 2021","DOI":"10.1109\/CVPR46437.2021.00205"},{"key":"16_CR22","unstructured":"Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. In: International Conference on Learning Representations (2022). https:\/\/openreview.net\/forum?id=nZeVKeeFYf9"},{"key":"16_CR23","doi-asserted-by":"crossref","unstructured":"Jia, M., Tang, L., Chen, B., Cardie, C., Belongie, S.J., Hariharan, B., Lim, S.: Visual prompt tuning. In: ECCV (33). LNCS, vol. 13693, pp. 709\u2013727. Springer (2022)","DOI":"10.1007\/978-3-031-19827-4_41"},{"key":"16_CR24","unstructured":"Kay, W., et\u00a0al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)"},{"key":"16_CR25","unstructured":"Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"16_CR26","doi-asserted-by":"crossref","unstructured":"Lester, B., Al-Rfou, R., Constant, N.: The power of scale for parameter-efficient prompt tuning. arXiv preprint arXiv:2104.08691 (2021)","DOI":"10.18653\/v1\/2021.emnlp-main.243"},{"key":"16_CR27","doi-asserted-by":"crossref","unstructured":"Li, H., et al.: Boosting low-data instance segmentation by unsupervised pre-training with saliency prompt. arXiv preprint arXiv:2302.01171 (2023)","DOI":"10.1109\/CVPR52729.2023.01486"},{"key":"16_CR28","doi-asserted-by":"crossref","unstructured":"Li, J., Wang, J., Tian, Q., Gao, W., Zhang, S.: Global-local temporal representations for video person re-identification. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 3958\u20133967 (2019)","DOI":"10.1109\/ICCV.2019.00406"},{"key":"16_CR29","doi-asserted-by":"crossref","unstructured":"Li, J., Zhang, S., Huang, T.: Multiscale 3d convolution network for video based person reidentification. In: AAAI, pp. 8618\u20138625 (2019)","DOI":"10.1609\/aaai.v33i01.33018618"},{"key":"16_CR30","doi-asserted-by":"crossref","unstructured":"Li, S., Sun, L., Li, Q.: Clip-reid: exploiting vision-language model for image re-identification without concrete text labels. arXiv preprint arXiv:2211.13977 (2022)","DOI":"10.1609\/aaai.v37i1.25225"},{"issue":"10","key":"16_CR31","doi-asserted-by":"publisher","first-page":"2788","DOI":"10.1109\/TCSVT.2017.2715499","volume":"28","author":"H Liu","year":"2017","unstructured":"Liu, H., Jie, Z., Jayashree, K., Qi, M., Jiang, J., Yan, S., Feng, J.: Video-based person re-identification with accumulative motion context. IEEE Trans. Circuits Syst. Video Technol. 28(10), 2788\u20132802 (2017)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"16_CR32","doi-asserted-by":"crossref","unstructured":"Liu, X., Zhang, P., Lu, H.: Video-based person re-identification with long short-term representation learning. In: International Conference on Image and Graphics, pp. 55\u201367. Springer (2023)","DOI":"10.1007\/978-3-031-46305-1_5"},{"key":"16_CR33","doi-asserted-by":"crossref","unstructured":"Liu, X., Zhang, P., Yu, C., Lu, H., Yang, X.: Watching you: Global-guided reciprocal learning for video-based person re-identification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 13334\u201313343 (2021)","DOI":"10.1109\/CVPR46437.2021.01313"},{"key":"16_CR34","unstructured":"Radford, A., et\u00a0al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748\u20138763. PMLR (2021)"},{"key":"16_CR35","doi-asserted-by":"crossref","unstructured":"Rasheed, H., khattak, M.U., Maaz, M., Khan, S., Khan, F.S.: Finetuned clip models are efficient video learners. In: The IEEE\/CVF Conference on Computer Vision and Pattern Recognition (2023)","DOI":"10.1109\/CVPR52729.2023.00633"},{"key":"16_CR36","doi-asserted-by":"crossref","unstructured":"Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815\u2013823 (2015)","DOI":"10.1109\/CVPR.2015.7298682"},{"key":"16_CR37","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818\u20132826 (2016)","DOI":"10.1109\/CVPR.2016.308"},{"key":"16_CR38","unstructured":"Vaswani, A., et al.: Attention is all you need. Advances in neural information processing systems 30 (2017)"},{"key":"16_CR39","doi-asserted-by":"crossref","unstructured":"Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: European Conference on Computer Vision, pp. 20\u201336. Springer (2016)","DOI":"10.1007\/978-3-319-46484-8_2"},{"key":"16_CR40","doi-asserted-by":"crossref","unstructured":"Wang, X., Zhao, R.: Person re-identification: System design and evaluation overview. In: Person Re-Identification, pp. 351\u2013370. Springer (2014)","DOI":"10.1007\/978-1-4471-6296-4_17"},{"key":"16_CR41","doi-asserted-by":"crossref","unstructured":"Wang, Y., Zhang, P., Gao, S., Geng, X., Lu, H., Wang, D.: Pyramid spatial-temporal aggregation for video-based person re-identification. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 12026\u201312035 (2021)","DOI":"10.1109\/ICCV48922.2021.01181"},{"key":"16_CR42","doi-asserted-by":"publisher","first-page":"2056","DOI":"10.1109\/TMM.2023.3291588","volume":"26","author":"Y Xing","year":"2024","unstructured":"Xing, Y., Wu, Q., Cheng, D., Zhang, S., Liang, G., Wang, P., Zhang, Y.: Dual modality prompt tuning for vision-language pre-trained model. IEEE Trans. Multimedia 26, 2056\u20132068 (2024). https:\/\/doi.org\/10.1109\/TMM.2023.3291588","journal-title":"IEEE Trans. Multimedia"},{"key":"16_CR43","doi-asserted-by":"crossref","unstructured":"Yan, Y., et al.: Learning multi-granular hypergraphs for video-based person re-identification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2899\u20132908 (2020)","DOI":"10.1109\/CVPR42600.2020.00297"},{"key":"16_CR44","doi-asserted-by":"crossref","unstructured":"Yang, J., Zheng, W.S., Yang, Q., Chen, Y.C., Tian, Q.: Spatial-temporal graph convolutional network for video-based person re-identification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3289\u20133299 (2020)","DOI":"10.1109\/CVPR42600.2020.00335"},{"issue":"6","key":"16_CR45","doi-asserted-by":"publisher","first-page":"1654","DOI":"10.1007\/s11263-019-01259-0","volume":"128","author":"J Yin","year":"2020","unstructured":"Yin, J., Wu, A., Zheng, W.S.: Fine-grained person re-identification. Int. J. Comput. Vision 128(6), 1654\u20131672 (2020). https:\/\/doi.org\/10.1007\/s11263-019-01259-0","journal-title":"Int. J. Comput. Vision"},{"key":"16_CR46","unstructured":"Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. Advances in neural information processing systems 30 (2017)"},{"issue":"12","key":"16_CR47","doi-asserted-by":"publisher","first-page":"8776","DOI":"10.1109\/TII.2022.3151766","volume":"18","author":"X Zang","year":"2022","unstructured":"Zang, X., Li, G., Gao, W.: Multidirection and multiscale pyramid in transformer for video-based pedestrian retrieval. IEEE Trans. Industr. Inf. 18(12), 8776\u20138785 (2022). https:\/\/doi.org\/10.1109\/TII.2022.3151766","journal-title":"IEEE Trans. Industr. Inf."},{"key":"16_CR48","doi-asserted-by":"publisher","first-page":"8861","DOI":"10.1109\/TIP.2021.3120881","volume":"30","author":"S Zhang","year":"2021","unstructured":"Zhang, S., Yang, Y., Wang, P., Liang, G., Zhang, X., Zhang, Y.: Attend to the difference: Cross-modality person re-identification via contrastive correlation. IEEE Trans. Image Process. 30, 8861\u20138872 (2021). https:\/\/doi.org\/10.1109\/TIP.2021.3120881","journal-title":"IEEE Trans. Image Process."},{"key":"16_CR49","doi-asserted-by":"publisher","first-page":"281","DOI":"10.1109\/TMM.2020.2977528","volume":"23","author":"S Zhang","year":"2021","unstructured":"Zhang, S., et al.: Person re-identification in aerial imagery. IEEE Trans. Multimedia 23, 281\u2013291 (2021). https:\/\/doi.org\/10.1109\/TMM.2020.2977528","journal-title":"IEEE Trans. Multimedia"},{"key":"16_CR50","doi-asserted-by":"crossref","unstructured":"Zhang, Z., Lan, C., Zeng, W., Chen, Z.: Multi-granularity reference-aided attentive feature aggregation for video-based person re-identification. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10407\u201310416 (2020)","DOI":"10.1109\/CVPR42600.2020.01042"},{"key":"16_CR51","doi-asserted-by":"crossref","unstructured":"Zheng, L., et al.: Mars: a video benchmark for large-scale person re-identification. In: ECCV, pp. 868\u2013884 (2016)","DOI":"10.1007\/978-3-319-46466-4_52"},{"key":"16_CR52","doi-asserted-by":"crossref","unstructured":"Zhong, Z., Zheng, L., Kang, G., Li, S., Yang, Y.: Random erasing data augmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a034, pp. 13001\u201313008 (2020)","DOI":"10.1609\/aaai.v34i07.7000"},{"key":"16_CR53","doi-asserted-by":"crossref","unstructured":"Zhou, Z., Huang, Y., Wang, W., Wang, L., Tan, T.: See the forest for the trees: Joint spatial and temporal recurrent neural networks for video-based person re-identification. In: Proceedings of the IEEE CDonference on Computer Vision and Pattern Recognition, pp. 4747\u20134756 (2017)","DOI":"10.1109\/CVPR.2017.717"},{"key":"16_CR54","doi-asserted-by":"crossref","unstructured":"Zhu, K., Guo, H., Zhang, S., Wang, Y., Liu, J., Wang, J., Tang, M.: Aaformer: auto-aligned transformer for person re-identification. IEEE Trans. Neural Networks Learn. Syst. (2023)","DOI":"10.1109\/TNNLS.2023.3301856"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73383-3_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,2]],"date-time":"2024-11-02T12:10:16Z","timestamp":1730549416000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73383-3_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,3]]},"ISBN":["9783031733826","9783031733833"],"references-count":54,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73383-3_16","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,11,3]]},"assertion":[{"value":"3 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}