{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,30]],"date-time":"2024-11-30T01:10:19Z","timestamp":1732929019622,"version":"3.30.0"},"publisher-location":"Cham","reference-count":30,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031732928"},{"type":"electronic","value":"9783031732904"}],"license":[{"start":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T00:00:00Z","timestamp":1729641600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,23]],"date-time":"2024-10-23T00:00:00Z","timestamp":1729641600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73290-4_1","type":"book-chapter","created":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T06:02:21Z","timestamp":1729576941000},"page":"1-11","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Robust Box Prompt Based SAM for\u00a0Medical Image Segmentation"],"prefix":"10.1007","author":[{"given":"Yuhao","family":"Huang","sequence":"first","affiliation":[]},{"given":"Xin","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Han","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Yan","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Haoran","family":"Dou","sequence":"additional","affiliation":[]},{"given":"Fajin","family":"Dong","sequence":"additional","affiliation":[]},{"given":"Dong","family":"Ni","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,23]]},"reference":[{"issue":"11","key":"1_CR1","doi-asserted-by":"publisher","first-page":"2274","DOI":"10.1109\/TPAMI.2012.120","volume":"34","author":"R Achanta","year":"2012","unstructured":"Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., S\u00fcsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274\u20132282 (2012)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"1_CR2","doi-asserted-by":"publisher","first-page":"1655","DOI":"10.1109\/TMI.2019.2954477","volume":"39","author":"I Avital","year":"2019","unstructured":"Avital, I., et al.: Neural segmentation of seeding rois (srois) for pre-surgical brain tractography. IEEE Trans. Med. Imaging 39(5), 1655\u20131667 (2019)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"1_CR3","doi-asserted-by":"publisher","first-page":"679","DOI":"10.1109\/TPAMI.1986.4767851","volume":"6","author":"J Canny","year":"1986","unstructured":"Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679\u2013698 (1986)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"1_CR4","unstructured":"Fan, Q., et al.: Stable segment anything model. arXiv preprint arXiv:2311.15776 (2023)"},{"key":"1_CR5","doi-asserted-by":"publisher","unstructured":"Fu, H., Li, F., Orlando, J.I., et\u00a0al.: Palm: Pathologic myopia challenge (2019). https:\/\/doi.org\/10.21227\/55pk-8z03","DOI":"10.21227\/55pk-8z03"},{"key":"1_CR6","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1007\/978-3-030-68793-9_18","volume-title":"Pattern Recognition. ICPR International Workshops and Challenges","author":"SA Hicks","year":"2021","unstructured":"Hicks, S.A., Jha, D., Thambawita, V., Halvorsen, P., Hammer, H.L., Riegler, M.A.: The EndoTect 2020 challenge: evaluation and comparison of classification, segmentation and inference time for endoscopy. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12668, pp. 263\u2013274. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-68793-9_18"},{"key":"1_CR7","unstructured":"Huang, Y., et al.: On the robustness of segment anything. arXiv preprint arXiv:2305.16220 (2023)"},{"key":"1_CR8","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1007\/978-3-031-43898-1_22","volume-title":"MICCAI 2023","author":"Y Huang","year":"2023","unstructured":"Huang, Y., et al.: Fourier test-time adaptation with multi-level consistency for robust classification. In: Greenspan, H., et al. (eds.) MICCAI 2023, vol. 14222, pp. 221\u2013231. Springer, Heidelberg (2023). https:\/\/doi.org\/10.1007\/978-3-031-43898-1_22"},{"key":"1_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2023.103061","volume":"92","author":"Y Huang","year":"2024","unstructured":"Huang, Y., Yang, X., Liu, L., Zhou, H., Chang, A., Zhou, X., et al.: Segment anything model for medical images? Med. Image Anal. 92, 103061 (2024)","journal-title":"Med. Image Anal."},{"key":"1_CR10","doi-asserted-by":"crossref","unstructured":"Ji, W., et\u00a0al.: Learning calibrated medical image segmentation via multi-rater agreement modeling. In: Proceedings of the IEEE\/CVF CVPR, pp. 12341\u201312351 (2021)","DOI":"10.1109\/CVPR46437.2021.01216"},{"key":"1_CR11","unstructured":"Ji, Y., Bai, H., Yang, J., Luo, P.: Amos: a large-scale abdominal multi-organ benchmark for versatile medical image segmentation. In: Advances In Neural Information Processing Systems (NeurlPS) Benchmark and Dataset Track (2022)"},{"key":"1_CR12","unstructured":"Ke, L., Ye, M., Danelljan, M., Tai, Y.W., Tang, C.K., et\u00a0al.: Segment anything in high quality. Adv. Neural Inf. Process. Syst. 36 (2024)"},{"key":"1_CR13","doi-asserted-by":"crossref","unstructured":"Kirillov, A., Mintun, E., Ravi, N., Mao, H., et\u00a0al.: Segment anything. In: Proceedings of the IEEE\/CVF ICCV, pp. 4015\u20134026 (2023)","DOI":"10.1109\/ICCV51070.2023.00371"},{"issue":"9","key":"1_CR14","doi-asserted-by":"publisher","first-page":"2198","DOI":"10.1109\/TMI.2019.2900516","volume":"38","author":"S Leclerc","year":"2019","unstructured":"Leclerc, S., Smistad, E., Pedrosa, J., \u00d8stvik, A., Cervenansky, F., et al.: Deep learning for segmentation using an open large-scale dataset in 2d echocardiography. IEEE Trans. Med. Imaging 38(9), 2198\u20132210 (2019)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"1_CR15","unstructured":"Lee, S., Shim, H., et\u00a0al.: Learning local shape and appearance for segmentation of knee cartilage in 3d mri. In: Medical Image Analysis for the Clinic: a Grand Challenge. In Proceedings of the 13th International Conference on MICCAI 2010, Beijing, China, pp. 231\u2013240 (2010)"},{"key":"1_CR16","doi-asserted-by":"publisher","first-page":"8","DOI":"10.1016\/j.compbiomed.2015.02.009","volume":"60","author":"G Lema\u00eetre","year":"2015","unstructured":"Lema\u00eetre, G., Mart\u00ed, R., Freixenet, J., et al.: Computer-aided detection and diagnosis for prostate cancer based on mono and multi-parametric mri: a review. Comput. Biol. Med. 60, 8\u201331 (2015)","journal-title":"Comput. Biol. Med."},{"key":"1_CR17","doi-asserted-by":"crossref","unstructured":"Li, F., Zhang, H., Sun, P., Zou, X., et\u00a0al.: Semantic-sam: segment and recognize anything at any granularity. arXiv preprint arXiv:2307.04767 (2023)","DOI":"10.1007\/978-3-031-73195-2_27"},{"issue":"12","key":"1_CR18","doi-asserted-by":"publisher","first-page":"4023","DOI":"10.1109\/TMI.2020.3008871","volume":"39","author":"X Li","year":"2020","unstructured":"Li, X., Jia, M., Islam, M.T., et al.: Self-supervised feature learning via exploiting multi-modal data for retinal disease diagnosis. IEEE Trans. Med. Imaging 39(12), 4023\u20134033 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"1_CR19","doi-asserted-by":"publisher","first-page":"654","DOI":"10.1038\/s41467-024-44824-z","volume":"15","author":"J Ma","year":"2024","unstructured":"Ma, J., He, Y., Li, F., Han, L., et al.: Segment anything in medical images. Nat. Commun. 15(1), 654 (2024)","journal-title":"Nat. Commun."},{"issue":"10","key":"1_CR20","doi-asserted-by":"publisher","first-page":"6695","DOI":"10.1109\/TPAMI.2021.3100536","volume":"44","author":"J Ma","year":"2021","unstructured":"Ma, J., et al.: Abdomenct-1k: is abdominal organ segmentation a solved problem? IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6695\u20136714 (2021)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"1_CR21","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2023.102918","volume":"89","author":"MA Mazurowski","year":"2023","unstructured":"Mazurowski, M.A., Dong, H., Gu, H., et al.: Segment anything model for medical image analysis: an experimental study. Med. Image Anal. 89, 102918 (2023)","journal-title":"Med. Image Anal."},{"key":"1_CR22","unstructured":"Polo, M.: Chest CT Segmentation Dataset. [EB\/OL] (2020). https:\/\/www.kaggle.com\/datasets\/polomarco\/chest-ct-segmentation"},{"key":"1_CR23","unstructured":"Qiao, Y., Zhang, C., Kang, T., Kim, D., et\u00a0al.: Robustness of sam: segment anything under corruptions and beyond. arXiv preprint arXiv:2306.07713 (2023)"},{"key":"1_CR24","unstructured":"Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., et\u00a0al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748\u20138763. PMLR (2021)"},{"key":"1_CR25","first-page":"7537","volume":"33","author":"M Tancik","year":"2020","unstructured":"Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil, S., Raghavan, N., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537\u20137547 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"1_CR26","doi-asserted-by":"crossref","unstructured":"Wang, Y., Zhao, Y., Petzold, L.: An empirical study on the robustness of the segment anything model (sam). arXiv preprint arXiv:2305.06422 (2023)","DOI":"10.2139\/ssrn.4476683"},{"key":"1_CR27","unstructured":"Wu, J., Fu, R., Fang, H., Liu, Y., Wang, Z., et\u00a0al.: Medical sam adapter: adapting segment anything model for medical image segmentation. arXiv preprint arXiv:2304.12620 (2023)"},{"key":"1_CR28","doi-asserted-by":"crossref","unstructured":"Xie, W., Willems, N., Patil, S., Li, Y., Kumar, M.: Sam fewshot finetuning for anatomical segmentation in medical images. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, pp. 3253\u20133261 (2024)","DOI":"10.1109\/WACV57701.2024.00322"},{"key":"1_CR29","doi-asserted-by":"crossref","unstructured":"Yang, Y., Soatto, S.: FDA: Fourier domain adaptation for semantic segmentation. In: Proceedings of the IEEE\/CVF CVPR, pp. 4085\u20134095 (2020)","DOI":"10.1109\/CVPR42600.2020.00414"},{"key":"1_CR30","unstructured":"Zhou, J., Jia, X., Ni, D., et\u00a0al.: Thyroid nodule segmentation and classification in ultrasound images (2020). https:\/\/zenodo.org\/records\/3715942"}],"container-title":["Lecture Notes in Computer Science","Machine Learning in Medical Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73290-4_1","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,30]],"date-time":"2024-11-30T00:34:36Z","timestamp":1732926876000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73290-4_1"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,23]]},"ISBN":["9783031732928","9783031732904"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73290-4_1","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,10,23]]},"assertion":[{"value":"23 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"MLMI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Machine Learning in Medical Imaging","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Marrakesh","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"15","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"mlmi-med2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/mlmi2024","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}