{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,30]],"date-time":"2024-11-30T05:05:21Z","timestamp":1732943121900,"version":"3.30.0"},"publisher-location":"Cham","reference-count":17,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031732805"},{"type":"electronic","value":"9783031732812"}],"license":[{"start":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T00:00:00Z","timestamp":1728172800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T00:00:00Z","timestamp":1728172800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-73281-2_3","type":"book-chapter","created":{"date-parts":[[2024,10,5]],"date-time":"2024-10-05T07:02:31Z","timestamp":1728111751000},"page":"24-33","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Adapted nnU-Net: A Robust Baseline for\u00a0Cross-Modality Synthesis and\u00a0Medical Image Inpainting"],"prefix":"10.1007","author":[{"given":"Arthur","family":"Longuefosse","sequence":"first","affiliation":[]},{"given":"Edern Le","family":"Bot","sequence":"additional","affiliation":[]},{"given":"Baudouin Denis","family":"De Senneville","sequence":"additional","affiliation":[]},{"given":"R\u00e9mi","family":"Giraud","sequence":"additional","affiliation":[]},{"given":"Boris","family":"Mansencal","sequence":"additional","affiliation":[]},{"given":"Pierrick","family":"Coup\u00e9","sequence":"additional","affiliation":[]},{"given":"Pascal","family":"Desbarats","sequence":"additional","affiliation":[]},{"given":"Fabien","family":"Baldacci","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,6]]},"reference":[{"issue":"2","key":"3_CR1","doi-asserted-by":"publisher","first-page":"203","DOI":"10.1038\/s41592-020-01008-z","volume":"18","author":"F Isensee","year":"2021","unstructured":"F. Isensee, P.F. Jaeger, S. A. Kohl et al. : nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211. (2021)","journal-title":"Nature methods"},{"key":"3_CR2","doi-asserted-by":"crossref","unstructured":"F. Isensee, T. Wald, C. Ulrich et al. : nnu-net revisited: A call for rigorous validation in 3d medical image segmentation. arXiv preprint arXiv:2404.09556. (2024)","DOI":"10.1007\/978-3-031-72114-4_47"},{"key":"3_CR3","unstructured":"I. Goodfellow, J. Pouget-Abadie, Mirza, B. Xu, et al. : Generative adversarial nets. In: Advances in neural information processing systems. pp 2672-2680 (2014)"},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"P. Isola, J. Zhu, T. Zhou, A. Efros : Image-to-Image Translation with Conditional Adversarial Networks. CVPR, pp 5967-5976. (2017)","DOI":"10.1109\/CVPR.2017.632"},{"key":"3_CR5","doi-asserted-by":"crossref","unstructured":"T. Wang, M. Liu, J. Zhu, et al : High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs. CVPR, pp 8798-8807. (2018)","DOI":"10.1109\/CVPR.2018.00917"},{"key":"3_CR6","doi-asserted-by":"crossref","unstructured":"J. Johnson, A. Alahi, L. Fei-Fei : Perceptual Losses for Real-Time Style Transfer and Super-Resolution. ECCV 2016 (2016)","DOI":"10.1007\/978-3-319-46475-6_43"},{"key":"3_CR7","unstructured":"S. Chen, K. Ma and Y. Zheng : Med3D: Transfer Learning for 3D Medical Image Analysis. arXiv preprint arXiv:1904.00625 (2019)"},{"issue":"7","key":"3_CR8","doi-asserted-by":"publisher","first-page":"4664","DOI":"10.1002\/mp.16529","volume":"50","author":"A Thummerer","year":"2023","unstructured":"A. Thummerer, E. van der Bijl, A. Galapon Jr et al. : SynthRAD2023 Grand Challenge dataset: Generating synthetic CT for radiotherapy. Medical physics, 50(7), 4664-4674. (2023)","journal-title":"Medical physics"},{"key":"3_CR9","doi-asserted-by":"crossref","unstructured":"E. Huijben, M.L. Terpstra, A. Galapon Jr et al. : Generating Synthetic Computed Tomography for Radiotherapy: SynthRAD2023 Challenge Report. arXiv preprint arXiv:2403.08447. (2024)","DOI":"10.1016\/S0167-8140(24)01075-2"},{"key":"3_CR10","doi-asserted-by":"crossref","unstructured":"R. Rombach, A. Blattmann, D. Lorenz et al. : High-resolution image synthesis with latent diffusion models. Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, 10684-10695 (2022)","DOI":"10.1109\/CVPR52688.2022.01042"},{"key":"3_CR11","doi-asserted-by":"crossref","unstructured":"J. Wolterink, A. Dinkla, M. Savenije et al. : Deep MR to CT Synthesis using Unpaired Data. (2017)","DOI":"10.1007\/978-3-319-68127-6_2"},{"key":"3_CR12","doi-asserted-by":"crossref","unstructured":"Y. Lei, J. Harms, T. Wang et al. : MRI-Only Based Synthetic CT Generation Using Dense Cycle Consistent Generative Adversarial Networks. Medical Physics. (2019)","DOI":"10.1002\/mp.13617"},{"issue":"1","key":"3_CR13","doi-asserted-by":"publisher","DOI":"10.1148\/radiol.230052","volume":"308","author":"A Longuefosse","year":"2023","unstructured":"A. Longuefosse, J. Raoul, I. Benlala et al. : Generating high-resolution synthetic CT from lung MRI with ultrashort echo times: initial evaluation in cystic fibrosis. Radiology, 308(1), e230052. (2023)","journal-title":"Radiology"},{"key":"3_CR14","unstructured":"F. Kofler, F. Meissen, F. Steinbauer et al. : The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting. arXiv preprint arXiv:2305.08992. (2023)"},{"key":"3_CR15","doi-asserted-by":"crossref","unstructured":"A. Durrer, J. Wolleb, F. Bieder et al. : Denoising Diffusion Models for 3D Healthy Brain Tissue Inpainting. arXiv preprint arXiv:2403.14499. (2024)","DOI":"10.1007\/978-3-031-72744-3_9"},{"key":"3_CR16","unstructured":"R. Zhu, X. Zhang, H. Pang et al. : Advancing Brain Tumor Inpainting with Generative Models. arXiv preprint arXiv:2402.01509. (2024)"},{"key":"3_CR17","doi-asserted-by":"crossref","unstructured":"A. Lugmayr, M. Danelljan, A. Romero et al. : Repaint: Inpainting using denoising diffusion probabilistic models. In Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition (pp. 11461-11471). (2022)","DOI":"10.1109\/CVPR52688.2022.01117"}],"container-title":["Lecture Notes in Computer Science","Simulation and Synthesis in Medical Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-73281-2_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,29]],"date-time":"2024-11-29T04:05:00Z","timestamp":1732853100000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-73281-2_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,6]]},"ISBN":["9783031732805","9783031732812"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-73281-2_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,10,6]]},"assertion":[{"value":"6 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SASHIMI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Simulation and Synthesis in Medical Imaging","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Marrakesh","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"9","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"sashimi2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2024.sashimi-workshop.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}