{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T20:40:32Z","timestamp":1732394432268,"version":"3.28.0"},"publisher-location":"Cham","reference-count":61,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031729942"},{"type":"electronic","value":"9783031729959"}],"license":[{"start":{"date-parts":[[2024,11,24]],"date-time":"2024-11-24T00:00:00Z","timestamp":1732406400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,24]],"date-time":"2024-11-24T00:00:00Z","timestamp":1732406400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,24]],"date-time":"2024-11-24T00:00:00Z","timestamp":1732406400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,24]],"date-time":"2024-11-24T00:00:00Z","timestamp":1732406400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-72995-9_26","type":"book-chapter","created":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T19:16:51Z","timestamp":1732389411000},"page":"456-473","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Placing Objects in\u00a0Context via\u00a0Inpainting for\u00a0Out-of-Distribution Segmentation"],"prefix":"10.1007","author":[{"given":"Pau","family":"de Jorge","sequence":"first","affiliation":[]},{"given":"Riccardo","family":"Volpi","sequence":"additional","affiliation":[]},{"given":"Puneet K.","family":"Dokania","sequence":"additional","affiliation":[]},{"given":"Philip H. S.","family":"Torr","sequence":"additional","affiliation":[]},{"given":"Gr\u00e9gory","family":"Rogez","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,24]]},"reference":[{"doi-asserted-by":"crossref","unstructured":"Avrahami, O., Lischinski, D., Fried, O.: Blended diffusion for text-driven editing of natural images. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 18208\u201318218 (2022)","key":"26_CR1","DOI":"10.1109\/CVPR52688.2022.01767"},{"doi-asserted-by":"crossref","unstructured":"Besnier, V., Bursuc, A., Picard, D., Briot, A.: Triggering failures: out-of-distribution detection by learning from local adversarial attacks in semantic segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 15701\u201315710 (2021)","key":"26_CR2","DOI":"10.1109\/ICCV48922.2021.01541"},{"doi-asserted-by":"crossref","unstructured":"Blum, H., Sarlin, P.E., Nieto, J., Siegwart, R., Cadena, C.: Fishyscapes: a benchmark for safe semantic segmentation in autonomous driving. In: proceedings of the IEEE\/CVF International Conference on Computer Vision Workshops (2019)","key":"26_CR3","DOI":"10.1109\/ICCVW.2019.00294"},{"doi-asserted-by":"crossref","unstructured":"Brooks, T., Holynski, A., Efros, A.A.: Instructpix2pix: learning to follow image editing instructions. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 18392\u201318402 (2023)","key":"26_CR4","DOI":"10.1109\/CVPR52729.2023.01764"},{"unstructured":"Chan, R., et al.: Segmentmeifyoucan: A benchmark for anomaly segmentation. arXiv preprint arXiv:2104.14812 (2021)","key":"26_CR5"},{"doi-asserted-by":"crossref","unstructured":"Chan, R., Rottmann, M., Gottschalk, H.: Entropy maximization and meta classification for out-of-distribution detection in semantic segmentation. In: Proceedings of the IEEE\/cvf International Conference On Computer Vision, pp. 5128\u20135137 (2021)","key":"26_CR6","DOI":"10.1109\/ICCV48922.2021.00508"},{"issue":"4","key":"26_CR7","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"LC Chen","year":"2017","unstructured":"Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834\u2013848 (2017)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"doi-asserted-by":"crossref","unstructured":"Cheng, B., Misra, I., Schwing, A.G., Kirillov, A., Girdhar, R.: Masked-attention mask transformer for universal image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (2022)","key":"26_CR8","DOI":"10.1109\/CVPR52688.2022.00135"},{"unstructured":"Corbi\u00e8re, C., Thome, N., Bar-Hen, A., Cord, M., P\u00e9rez, P.: Addressing failure prediction by learning model confidence. Adv. Neural Inf. Proce. Syst. 32 (2019)","key":"26_CR9"},{"doi-asserted-by":"crossref","unstructured":"Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213\u20133223 (2016)","key":"26_CR10","DOI":"10.1109\/CVPR.2016.350"},{"key":"26_CR11","first-page":"8780","volume":"34","author":"P Dhariwal","year":"2021","unstructured":"Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780\u20138794 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"doi-asserted-by":"crossref","unstructured":"Di\u00a0Biase, G., Blum, H., Siegwart, R., Cadena, C.: Pixel-wise anomaly detection in complex driving scenes. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 16918\u201316927 (2021)","key":"26_CR12","DOI":"10.1109\/CVPR46437.2021.01664"},{"unstructured":"Du, X., Sun, Y., Zhu, X., Li, Y.: Dream the impossible: Outlier imagination with diffusion models. arXiv preprint arXiv:2309.13415 (2023)","key":"26_CR13"},{"unstructured":"Everingham, M., Van\u00a0Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http:\/\/www.pascal-network.org\/challenges\/VOC\/voc2012\/workshop\/index.html (2012)","key":"26_CR14"},{"unstructured":"Gal, Y., Ghahramani, Z.: Dropout as a bayesian approximation: representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050\u20131059. PMLR (2016)","key":"26_CR15"},{"doi-asserted-by":"publisher","unstructured":"Grci\u0107, M., Bevandi\u0107, P., \u0160egvi\u0107, S.: Densehybrid: Hybrid anomaly detection for dense open-set recognition. In: European Conference on Computer Vision, pp. 500\u2013517. Springer (2022). https:\/\/doi.org\/10.1007\/978-3-031-19806-9_29","key":"26_CR16","DOI":"10.1007\/978-3-031-19806-9_29"},{"unstructured":"Grounded-SAM Contributors: Grounded-Segment-Anything. LICENSE Apache-2.0. https:\/\/github.com\/IDEA-Research\/Grounded-Segment-Anything (2023)","key":"26_CR17"},{"unstructured":"Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321\u20131330. PMLR (2017)","key":"26_CR18"},{"unstructured":"Haldimann, D., Blum, H., Siegwart, R., Cadena, C.: This is not what i imagined: Error detection for semantic segmentation through visual dissimilarity. arXiv preprint arXiv:1909.00676 (2019)","key":"26_CR19"},{"doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","key":"26_CR20","DOI":"10.1109\/CVPR.2016.90"},{"unstructured":"Hendrycks, D., et al.: Scaling out-of-distribution detection for real-world settings. arXiv preprint arXiv:1911.11132 (2019)","key":"26_CR21"},{"unstructured":"Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. arXiv preprint arXiv:1610.02136 (2016)","key":"26_CR22"},{"key":"26_CR23","first-page":"6840","volume":"33","author":"J Ho","year":"2020","unstructured":"Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840\u20136851 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"doi-asserted-by":"crossref","unstructured":"Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125\u20131134 (2017)","key":"26_CR24","DOI":"10.1109\/CVPR.2017.632"},{"unstructured":"Jiang, H., Kim, B., Guan, M., Gupta, M.: To trust or not to trust a classifier. Advances in Neural Inf. Proce. Syst. 31 (2018)","key":"26_CR25"},{"doi-asserted-by":"crossref","unstructured":"de\u00a0Jorge, P., Volpi, R., Torr, P.H., Rogez, G.: Reliability in semantic segmentation: are we on the right track? In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7173\u20137182 (2023)","key":"26_CR26","DOI":"10.1109\/CVPR52729.2023.00693"},{"doi-asserted-by":"crossref","unstructured":"Jung, S., Lee, J., Gwak, D., Choi, S., Choo, J.: Standardized max logits: a simple yet effective approach for identifying unexpected road obstacles in urban-scene segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 15425\u201315434 (2021)","key":"26_CR27","DOI":"10.1109\/ICCV48922.2021.01514"},{"doi-asserted-by":"crossref","unstructured":"Karazija, L., Laina, I., Vedaldi, A., Rupprecht, C.: Diffusion models for zero-shot open-vocabulary segmentation. arXiv preprint arXiv:2306.09316 (2023)","key":"26_CR28","DOI":"10.1007\/978-3-031-72652-1_18"},{"unstructured":"Kirillov, A., et\u00a0al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)","key":"26_CR29"},{"unstructured":"Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. Advances in Neural Inf. Proce. Syst. 30 (2017)","key":"26_CR30"},{"unstructured":"Lee, K., Lee, K., Lee, H., Shin, J.: A simple unified framework for detecting out-of-distribution samples and adversarial attacks. Advances in Neural Inf. Proce. Syst. 31 (2018)","key":"26_CR31"},{"key":"26_CR32","first-page":"31360","volume":"35","author":"C Liang","year":"2022","unstructured":"Liang, C., Wang, W., Miao, J., Yang, Y.: Gmmseg: gaussian mixture based generative semantic segmentation models. Adv. Neural. Inf. Process. Syst. 35, 31360\u201331375 (2022)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"unstructured":"Liang, S., Li, Y., Srikant, R.: Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690 (2017)","key":"26_CR33"},{"doi-asserted-by":"publisher","unstructured":"Lin, T.Y., et al.: Microsoft coco: common objects in context. In: Computer Vision\u2013ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pp. 740\u2013755. Springer (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48","key":"26_CR34","DOI":"10.1007\/978-3-319-10602-1_48"},{"unstructured":"Lis, K., Honari, S., Fua, P., Salzmann, M.: Detecting road obstacles by erasing them. arXiv preprint arXiv:2012.13633 (2020)","key":"26_CR35"},{"doi-asserted-by":"crossref","unstructured":"Lis, K., Nakka, K., Fua, P., Salzmann, M.: Detecting the unexpected via image resynthesis. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 2152\u20132161 (2019)","key":"26_CR36","DOI":"10.1109\/ICCV.2019.00224"},{"doi-asserted-by":"crossref","unstructured":"Liu, S., et\u00a0al.: Grounding dino: Marrying dino with grounded pre-training for open-set object detection. arXiv preprint arXiv:2303.05499 (2023)","key":"26_CR37","DOI":"10.1007\/978-3-031-72970-6_3"},{"key":"26_CR38","first-page":"21464","volume":"33","author":"W Liu","year":"2020","unstructured":"Liu, W., Wang, X., Owens, J., Li, Y.: Energy-based out-of-distribution detection. Adv. Neural. Inf. Process. Syst. 33, 21464\u201321475 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"doi-asserted-by":"crossref","unstructured":"Liu, Y., et al.: Residual pattern learning for pixel-wise out-of-distribution detection in semantic segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 1151\u20131161 (2023)","key":"26_CR39","DOI":"10.1109\/ICCV51070.2023.00112"},{"doi-asserted-by":"crossref","unstructured":"Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition, pp. 11976\u201311986 (2022)","key":"26_CR40","DOI":"10.1109\/CVPR52688.2022.01167"},{"doi-asserted-by":"crossref","unstructured":"Loiseau, T., Vu, T.H., Chen, M., P\u00e9rez, P., Cord, M.: Reliability in semantic segmentation: Can we use synthetic data? arXiv preprint arXiv:2312.09231 (2023)","key":"26_CR41","DOI":"10.1007\/978-3-031-73337-6_25"},{"unstructured":"Meng, C., He, Y., Song, Y., Song, J., Wu, J., Zhu, J.Y., Ermon, S.: Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint arXiv:2108.01073 (2021)","key":"26_CR42"},{"unstructured":"Mukhoti, J., Gal, Y.: Evaluating bayesian deep learning methods for semantic segmentation. arXiv preprint arXiv:1811.12709 (2018)","key":"26_CR43"},{"doi-asserted-by":"crossref","unstructured":"Nayal, N., Yavuz, M., Henriques, J.F., G\u00fcney, F.: Rba: segmenting unknown regions rejected by all. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 711\u2013722 (2023)","key":"26_CR44","DOI":"10.1109\/ICCV51070.2023.00072"},{"doi-asserted-by":"crossref","unstructured":"Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427\u2013436 (2015)","key":"26_CR45","DOI":"10.1109\/CVPR.2015.7298640"},{"unstructured":"Nichol, A., et al.: Glide: Towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)","key":"26_CR46"},{"doi-asserted-by":"crossref","unstructured":"Pinggera, P., Ramos, S., Gehrig, S., Franke, U., Rother, C., Mester, R.: Lost and found: detecting small road hazards for self-driving vehicles. In: 2016 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1099\u20131106. IEEE (2016)","key":"26_CR47","DOI":"10.1109\/IROS.2016.7759186"},{"doi-asserted-by":"crossref","unstructured":"Rai, S.N., Cermelli, F., Fontanel, D., Masone, C., Caputo, B.: Unmasking anomalies in road-scene segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 4037\u20134046 (2023)","key":"26_CR48","DOI":"10.1109\/ICCV51070.2023.00373"},{"unstructured":"Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., Chen, M.: Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.061251(2), 3 (2022)","key":"26_CR49"},{"doi-asserted-by":"crossref","unstructured":"Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684\u201310695 (2022)","key":"26_CR50","DOI":"10.1109\/CVPR52688.2022.01042"},{"doi-asserted-by":"crossref","unstructured":"Saad, W., Alsayyari, A.: Loose animal-vehicle accidents mitigation: Vision and challenges. In: 2019 International Conference on Innovative Trends in Computer Engineering (ITCE), pp. 359\u2013364. IEEE (2019)","key":"26_CR51","DOI":"10.1109\/ITCE.2019.8646591"},{"doi-asserted-by":"crossref","unstructured":"Saharia, C., et al.: Palette: Image-to-image diffusion models. In: ACM SIGGRAPH 2022 Conference Proceedings, pp. 1\u201310 (2022)","key":"26_CR52","DOI":"10.1145\/3528233.3530757"},{"key":"26_CR53","first-page":"36479","volume":"35","author":"C Saharia","year":"2022","unstructured":"Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479\u201336494 (2022)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"doi-asserted-by":"crossref","unstructured":"Sakaridis, C., Dai, D., Van\u00a0Gool, L.: ACDC: the adverse conditions dataset with correspondences for semantic driving scene understanding. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 10765\u201310775 (2021)","key":"26_CR54","DOI":"10.1109\/ICCV48922.2021.01059"},{"unstructured":"Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256\u20132265. PMLR (2015)","key":"26_CR55"},{"unstructured":"Song, Y., Ermon, S.: Generative modeling by estimating gradients of the data distribution. Advances in Neural Inf. Proce. Syst. 32 (2019)","key":"26_CR56"},{"doi-asserted-by":"crossref","unstructured":"Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for semantic segmentation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 7262\u20137272 (2021)","key":"26_CR57","DOI":"10.1109\/ICCV48922.2021.00717"},{"doi-asserted-by":"publisher","unstructured":"Tian, Y., Liu, Y., Pang, G., Liu, F., Chen, Y., Carneiro, G.: Pixel-wise energy-biased abstention learning for anomaly segmentation on complex urban driving scenes. In: European Conference on Computer Vision, pp. 246\u2013263. Springer (2022). https:\/\/doi.org\/10.1007\/978-3-031-19842-7_15","key":"26_CR58","DOI":"10.1007\/978-3-031-19842-7_15"},{"doi-asserted-by":"crossref","unstructured":"Varma, G., Subramanian, A., Namboodiri, A., Chandraker, M., Jawahar, C.: Idd: a dataset for exploring problems of autonomous navigation in unconstrained environments. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1743\u20131751. IEEE (2019)","key":"26_CR59","DOI":"10.1109\/WACV.2019.00190"},{"doi-asserted-by":"publisher","unstructured":"Xia, Y., Zhang, Y., Liu, F., Shen, W., Yuille, A.L.: Synthesize then compare: detecting failures and anomalies for semantic segmentation. In: Computer Vision\u2013ECCV 2020: 16th European Conference, Glasgow, UK, August 23\u201328, 2020, Proceedings, Part I 16, pp. 145\u2013161. Springer (2020). https:\/\/doi.org\/10.1007\/978-3-030-58452-8_9","key":"26_CR60","DOI":"10.1007\/978-3-030-58452-8_9"},{"doi-asserted-by":"crossref","unstructured":"Xiao, T., Liu, Y., Zhou, B., Jiang, Y., Sun, J.: Unified perceptual parsing for scene understanding. In: Proceedings of the European conference on computer vision (ECCV), pp. 418\u2013434 (2018)","key":"26_CR61","DOI":"10.1007\/978-3-030-01228-1_26"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72995-9_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,23]],"date-time":"2024-11-23T20:06:57Z","timestamp":1732392417000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72995-9_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,24]]},"ISBN":["9783031729942","9783031729959"],"references-count":61,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72995-9_26","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,11,24]]},"assertion":[{"value":"24 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}