{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T21:16:22Z","timestamp":1742937382570,"version":"3.40.3"},"publisher-location":"Cham","reference-count":39,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031729720"},{"type":"electronic","value":"9783031729737"}],"license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-72973-7_3","type":"book-chapter","created":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T14:03:04Z","timestamp":1730383384000},"page":"37-53","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["WeConvene: Learned Image Compression with\u00a0Wavelet-Domain Convolution and\u00a0Entropy Model"],"prefix":"10.1007","author":[{"given":"Haisheng","family":"Fu","sequence":"first","affiliation":[]},{"given":"Jie","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Zhenman","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Jingning","family":"Han","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Liang","sequence":"additional","affiliation":[]},{"given":"Guohe","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,11,1]]},"reference":[{"key":"3_CR1","doi-asserted-by":"crossref","unstructured":"Akbari, M., Liang, J., Han, J., Tu, C.: Learned bi-resolution image coding using generalized octave convolutions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a035, pp. 6592\u20136599 (Feb 2021)","DOI":"10.1609\/aaai.v35i8.16816"},{"key":"3_CR2","doi-asserted-by":"crossref","unstructured":"Akbari, M., Liang, J., Han, J., Tu, C.: Learned multi-resolution variable-rate image compression with octave-based residual blocks. IEEE Trans. Multimedia (2021)","DOI":"10.1109\/TMM.2021.3068523"},{"key":"3_CR3","unstructured":"Akyazi, P., Ebrahimi, T.: Learning-based image compression using convolutional autoencoder and wavelet decomposition. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (June 2019)"},{"key":"3_CR4","doi-asserted-by":"publisher","DOI":"10.2312\/stag.20141242","author":"N Asuni","year":"2014","unstructured":"Asuni, N., Giachetti, A.: TESTIMAGES: a large-scale archive for testing visual devices and basic image processing algorithms. Eurographics Association (2014). https:\/\/doi.org\/10.2312\/stag.20141242","journal-title":"Eurographics Association"},{"key":"3_CR5","unstructured":"Ball\u00e9, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. In: International Conference on Learning Representations, pp. 1\u201323 (2018)"},{"key":"3_CR6","unstructured":"Ball\u00e9, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. In: International Conference on Learning Representations (2017)"},{"key":"3_CR7","unstructured":"Bjontegaard, G.: Calculation of average PSNR differences between RD curves (2001), VCEG-M33"},{"key":"3_CR8","doi-asserted-by":"crossref","unstructured":"Chen, Y., et al.: Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 3435\u20133444 (2019)","DOI":"10.1109\/ICCV.2019.00353"},{"key":"3_CR9","doi-asserted-by":"crossref","unstructured":"Cheng, Z., Sun, H., Takeuchi, M., Katto, J.: Learned image compression with discretized gaussian mixture likelihoods and attention modules. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7939\u20137948 (2020)","DOI":"10.1109\/CVPR42600.2020.00796"},{"key":"3_CR10","doi-asserted-by":"publisher","DOI":"10.1016\/j.sigpro.2022.108778","volume":"202","author":"H Fu","year":"2023","unstructured":"Fu, H., Liang, F.: Learned image compression with generalized octave convolution and cross-resolution parameter estimation. Signal Process. 202, 108778 (2023)","journal-title":"Signal Process."},{"key":"3_CR11","doi-asserted-by":"crossref","unstructured":"Fu, H., Liang, F., Liang, J., Fang, Z., Zhang, G., Han, J.: Efficient learned image compression with selective kernel residual module and channel-wise causal context model. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4040\u20134044 (2024)","DOI":"10.1109\/ICASSP48485.2024.10447420"},{"issue":"8","key":"3_CR12","doi-asserted-by":"publisher","first-page":"4309","DOI":"10.1109\/TCSVT.2023.3237274","volume":"33","author":"H Fu","year":"2023","unstructured":"Fu, H., Liang, F., Liang, J., Li, B., Zhang, G., Han, J.: Asymmetric learned image compression with multi-scale residual block, importance scaling, and post-quantization filtering. IEEE Trans. Circuits Syst. Video Technol. 33(8), 4309\u20134321 (2023)","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"3_CR13","doi-asserted-by":"publisher","first-page":"2063","DOI":"10.1109\/TIP.2023.3263099","volume":"32","author":"H Fu","year":"2023","unstructured":"Fu, H., et al.: Learned image compression with gaussian-laplacian-logistic mixture model and concatenated residual modules. IEEE Trans. Image Process. 32, 2063\u20132076 (2023)","journal-title":"IEEE Trans. Image Process."},{"key":"3_CR14","doi-asserted-by":"crossref","unstructured":"Gao, G., et al.: Neural image compression via attentional multi-scale back projection and frequency decomposition. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 14677\u201314686 (2021)","DOI":"10.1109\/ICCV48922.2021.01441"},{"issue":"4","key":"3_CR15","doi-asserted-by":"publisher","first-page":"2329","DOI":"10.1109\/TCSVT.2021.3089491","volume":"32","author":"Z Guo","year":"2022","unstructured":"Guo, Z., Zhang, Z., Feng, R., Chen, Z.: Causal contextual prediction for learned image compression. IEEE Trans. Circuits Syst. Video Technol. 32(4), 2329\u20132341 (2022). https:\/\/doi.org\/10.1109\/TCSVT.2021.3089491","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"3_CR16","doi-asserted-by":"crossref","unstructured":"He, D., Yang, Z., Peng, W., Ma, R., Qin, H., Wang, Y.: Elic: efficient learned image compression with unevenly grouped space-channel contextual adaptive coding. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5718\u20135727 (June 2022)","DOI":"10.1109\/CVPR52688.2022.00563"},{"key":"3_CR17","doi-asserted-by":"crossref","unstructured":"He, D., Zheng, Y., Sun, B., Wang, Y., Qin, H.: Checkerboard context model for efficient learned image compression. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14771\u201314780 (June 2021)","DOI":"10.1109\/CVPR46437.2021.01453"},{"key":"3_CR18","doi-asserted-by":"publisher","unstructured":"Hu, Y., Yang, W., Ma, Z., Liu, J.: Learning end-to-end lossy image compression: A benchmark. IEEE Trans. Pattern Anal. Mach. Intell., 1 (2021). https:\/\/doi.org\/10.1109\/TPAMI.2021.3065339","DOI":"10.1109\/TPAMI.2021.3065339"},{"key":"3_CR19","doi-asserted-by":"crossref","unstructured":"Iliopoulou, S., Tsinganos, P., Ampeliotis, D., Skodras, A.: Learned image compression with wavelet preprocessing for low bit rates. In: 2023 24th International Conference on Digital Signal Processing (DSP), pp.\u00a01\u20135 (2023)","DOI":"10.1109\/DSP58604.2023.10167974"},{"key":"3_CR20","doi-asserted-by":"publisher","unstructured":"Jiang, W., Yang, J., Zhai, Y., Ning, P., Gao, F., Wang, R.: Mlic: multi-reference entropy model for learned image compression. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 7618\u20137627 (2023). https:\/\/doi.org\/10.1145\/3581783.3611694","DOI":"10.1145\/3581783.3611694"},{"key":"3_CR21","unstructured":"Kodak, E.: Kodak lossless true color image suite (photocd pcd0992) (1993). http:\/\/r0k.us\/graphics\/kodak\/"},{"key":"3_CR22","doi-asserted-by":"publisher","unstructured":"Koyuncu, A.B., Gao, H., Boev, A., Gaikov, G., Alshina, E., Steinbach, E.: Contextformer: a transformer with spatio-channel attention for context modeling in learned image compression. In: Computer Vision \u2013 ECCV 2022, pp. 447\u2013463 (2022). https:\/\/doi.org\/10.1007\/978-3-031-19800-7_26","DOI":"10.1007\/978-3-031-19800-7_26"},{"key":"3_CR23","unstructured":"Lee, J., Cho, S., Kim, M.: Joint autoregressive and hierarchical priors for learned image compression. arXiv:1912.12817 (2020)"},{"key":"3_CR24","unstructured":"Lee, J., Cho, S., Beack, S.K.: Context-adaptive entropy model for end-to-end optimized image compression. In: International Conference on Learning Representations (2019)"},{"key":"3_CR25","doi-asserted-by":"crossref","unstructured":"Lin, J., et al.: Variable-rate multi-frequency image compression using modulated generalized octave convolution. In: 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), pp.\u00a01\u20136 (2020)","DOI":"10.1109\/MMSP48831.2020.9287082"},{"key":"3_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1007\/978-3-319-10602-1_48","volume-title":"Computer Vision \u2013 ECCV 2014","author":"T-Y Lin","year":"2014","unstructured":"Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740\u2013755. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10602-1_48"},{"key":"3_CR27","doi-asserted-by":"publisher","first-page":"7845","DOI":"10.1109\/TIP.2020.3007828","volume":"29","author":"J Liu","year":"2020","unstructured":"Liu, J., Liu, D., Yang, W., Xia, S., Zhang, X., Dai, Y.: A comprehensive benchmark for single image compression artifact reduction. IEEE Trans. Image Process. 29, 7845\u20137860 (2020)","journal-title":"IEEE Trans. Image Process."},{"key":"3_CR28","doi-asserted-by":"crossref","unstructured":"Liu, J., Sun, H., Katto, J.: Learned image compression with mixed transformer-cnn architectures. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14388\u201314397 (June 2023)","DOI":"10.1109\/CVPR52729.2023.01383"},{"issue":"3","key":"3_CR29","doi-asserted-by":"publisher","first-page":"1247","DOI":"10.1109\/TPAMI.2020.3026003","volume":"44","author":"H Ma","year":"2022","unstructured":"Ma, H., Liu, D., Yan, N., Li, H., Wu, F.: End-to-end optimized versatile image compression with wavelet-like transform. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1247\u20131263 (2022). https:\/\/doi.org\/10.1109\/TPAMI.2020.3026003","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"3_CR30","unstructured":"Minnen, D., Ball\u00e9, J., Toderici, G.D.: Joint autoregressive and hierarchical priors for learned image compression. In: Advances in Neural Information Processing Systems, pp. 10794\u201310803 (2018)"},{"key":"3_CR31","doi-asserted-by":"crossref","unstructured":"Minnen, D., Singh, S.: Channel-wise autoregressive entropy models for learned image compression. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 3339\u20133343 (2020)","DOI":"10.1109\/ICIP40778.2020.9190935"},{"key":"3_CR32","unstructured":"Qian, Y., Lin, M., Sun, X., Tan, Z., Jin, R.: Entroformer: a transformer-based entropy model for learned image compression. In: International Conference on Learning Representations (May 2022)"},{"key":"3_CR33","doi-asserted-by":"crossref","unstructured":"Taubman, D.S., Marcellin, M.W.: JPEG2000: image compression fundamentals, standards, and practice. Kluwer Academic Publishers (2002)","DOI":"10.1007\/978-1-4615-0799-4"},{"key":"3_CR34","unstructured":"Toderici, G., Timofte, R., Balle, J., Agustsson, E., Johnston, N., Mentzer, F.: 2021 workshop and challenge on learned image compression (clic). http:\/\/www.compression.cc"},{"issue":"1","key":"3_CR35","doi-asserted-by":"publisher","first-page":"18","DOI":"10.1109\/30.125072","volume":"38","author":"GK Wallace","year":"1992","unstructured":"Wallace, G.K.: The jpeg still picture compression standard. IEEE Trans. Consum. Electron. 38(1), 18\u201334 (1992)","journal-title":"IEEE Trans. Consum. Electron."},{"key":"3_CR36","doi-asserted-by":"crossref","unstructured":"Xie, Y., Cheng, K.L., Chen, Q.: Enhanced invertible encoding for learned image compression. In: Proceedings of the ACM International Conference on Multimedia, pp. 162\u2013170 (2021)","DOI":"10.1145\/3474085.3475213"},{"key":"3_CR37","doi-asserted-by":"crossref","unstructured":"Zafari, A., Khoshkhahtinat, A., Mehta, P., Ebrahimi\u00a0Saadabadi, M.S., Akyash, M., Nasrabadi, N.M.: Frequency disentangled features in neural image compression. In: 2023 IEEE International Conference on Image Processing (ICIP), pp. 2815\u20132819 (2023)","DOI":"10.1109\/ICIP49359.2023.10222816"},{"key":"3_CR38","unstructured":"Zhu, Y., Yang, Y., Cohen, T.: Transformer-based transform coding. In: International Conference on Learning Representations (2022)"},{"key":"3_CR39","doi-asserted-by":"crossref","unstructured":"Zou, R., Song, C., Zhang, Z.: The devil is in the details: window-based attention for image compression. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 17492\u201317501 (June 2022)","DOI":"10.1109\/CVPR52688.2022.01697"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72973-7_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,2,15]],"date-time":"2025-02-15T15:00:01Z","timestamp":1739631601000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72973-7_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11,1]]},"ISBN":["9783031729720","9783031729737"],"references-count":39,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72973-7_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,11,1]]},"assertion":[{"value":"1 November 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}