{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:40:57Z","timestamp":1742913657042,"version":"3.40.3"},"publisher-location":"Cham","reference-count":48,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031729126"},{"type":"electronic","value":"9783031729133"}],"license":[{"start":{"date-parts":[[2024,12,2]],"date-time":"2024-12-02T00:00:00Z","timestamp":1733097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,12,2]],"date-time":"2024-12-02T00:00:00Z","timestamp":1733097600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-72913-3_22","type":"book-chapter","created":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T21:45:35Z","timestamp":1733089535000},"page":"395-411","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Deep Companion Learning: Enhancing Generalization Through Historical Consistency"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0009-0001-9496-3144","authenticated-orcid":false,"given":"Ruizhao","family":"Zhu","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0675-2268","authenticated-orcid":false,"given":"Venkatesh","family":"Saligrama","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,12,2]]},"reference":[{"key":"22_CR1","unstructured":"Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450"},{"key":"22_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"446","DOI":"10.1007\/978-3-319-10599-4_29","volume-title":"Computer Vision \u2013 ECCV 2014","author":"L Bossard","year":"2014","unstructured":"Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 \u2013 mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446\u2013461. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10599-4_29"},{"key":"22_CR3","doi-asserted-by":"crossref","unstructured":"Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)","DOI":"10.1109\/ICCV48922.2021.00951"},{"key":"22_CR4","unstructured":"Cha, J., et al.: SWAD: domain generalization by seeking flat minima. In: NeurIPS (2021)"},{"key":"22_CR5","doi-asserted-by":"crossref","unstructured":"Chen, D., Mei, J.P., Zhang, H., Wang, C., Feng, Y., Chen, C.: Knowledge distillation with the reused teacher classifier. In: CVPR (2022)","DOI":"10.1109\/CVPR52688.2022.01163"},{"key":"22_CR6","doi-asserted-by":"crossref","unstructured":"Chen, P., Liu, S., Zhao, H., Jia, J.: Distilling knowledge via knowledge review. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 5008\u20135017 (2021)","DOI":"10.1109\/CVPR46437.2021.00497"},{"key":"22_CR7","unstructured":"Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)"},{"key":"22_CR8","doi-asserted-by":"crossref","unstructured":"Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)","DOI":"10.1109\/CVPR.2019.00020"},{"key":"22_CR9","unstructured":"Defazio, A., Bottou, L.: On the ineffectiveness of variance reduced optimization for deep learning. In: NeurIPS (2019)"},{"key":"22_CR10","unstructured":"DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)"},{"key":"22_CR11","unstructured":"Dosovitskiy, A., et\u00a0al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"key":"22_CR12","unstructured":"Du, J., Zhou, D., Feng, J., Tan, V., Zhou, J.T.: Sharpness-aware training for free. In: NeurIPS (2022)"},{"key":"22_CR13","unstructured":"Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently improving generalization. In: ICLR (2021)"},{"key":"22_CR14","unstructured":"Grill, J.B., Strub, F., et al.: Bootstrap your own latent - a new approach to self-supervised learning. In: NeurIPS (2020)"},{"key":"22_CR15","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"22_CR16","doi-asserted-by":"crossref","unstructured":"He, K., Chen, X., Xie, S., Li, Y., Doll\u00e1r, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: CVPR (2022)","DOI":"10.1109\/CVPR52688.2022.01553"},{"key":"22_CR17","doi-asserted-by":"crossref","unstructured":"He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00975"},{"key":"22_CR18","unstructured":"Hendrycks, D., Mu, N., Cubuk, E.D., Zoph, B., Gilmer, J., Lakshminarayanan, B.: AugMix: a simple data processing method to improve robustness and uncertainty. arXiv preprint arXiv:1912.02781 (2019)"},{"key":"22_CR19","unstructured":"Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531 (2015)"},{"issue":"1","key":"22_CR20","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1162\/neco.1997.9.1.1","volume":"9","author":"S Hochreiter","year":"1997","unstructured":"Hochreiter, S., Schmidhuber, J.: Flat minima. Neural Comput. 9(1), 1\u201342 (1997)","journal-title":"Neural Comput."},{"key":"22_CR21","unstructured":"Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)"},{"key":"22_CR22","unstructured":"Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., Wilson, A.G.: Averaging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407 (2018)"},{"key":"22_CR23","doi-asserted-by":"crossref","unstructured":"Kim, K., Ji, B., Yoon, D., Hwang, S.: Self-knowledge distillation with progressive refinement of targets. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00650"},{"key":"22_CR24","doi-asserted-by":"crossref","unstructured":"Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops (2013)","DOI":"10.1109\/ICCVW.2013.77"},{"key":"22_CR25","unstructured":"Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)"},{"key":"22_CR26","unstructured":"Krogh, A., Hertz, J.: A simple weight decay can improve generalization. In: NeurIPS (1991)"},{"key":"22_CR27","unstructured":"Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2017)"},{"key":"22_CR28","unstructured":"Le, Y., Yang, X.: Tiny ImageNet visual recognition challenge (2015)"},{"key":"22_CR29","doi-asserted-by":"crossref","unstructured":"Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00986"},{"key":"22_CR30","unstructured":"Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)"},{"key":"22_CR31","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"122","DOI":"10.1007\/978-3-030-01264-9_8","volume-title":"Computer Vision \u2013 ECCV 2018","author":"N Ma","year":"2018","unstructured":"Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision \u2013 ECCV 2018. LNCS, vol. 11218, pp. 122\u2013138. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01264-9_8"},{"key":"22_CR32","doi-asserted-by":"crossref","unstructured":"M\u00fcller, S.G., Hutter, F.: TrivialAugment: tuning-free yet state-of-the-art data augmentation. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00081"},{"key":"22_CR33","unstructured":"Neu, G., Dziugaite, G.K., Haghifam, M., Roy, D.M.: Information-theoretic generalization bounds for stochastic gradient descent. In: COLT (2021)"},{"key":"22_CR34","doi-asserted-by":"crossref","unstructured":"Parkhi, O.M., Vedaldi, A., Zisserman, A., Jawahar, C.: Cats and dogs. In: CVPR (2012)","DOI":"10.1109\/CVPR.2012.6248092"},{"issue":"3","key":"22_CR35","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","volume":"115","author":"O Russakovsky","year":"2015","unstructured":"Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. IJCV 115(3), 211\u2013252 (2015)","journal-title":"IJCV"},{"key":"22_CR36","doi-asserted-by":"crossref","unstructured":"Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning - From Theory to Algorithms. Cambridge University Press (2014)","DOI":"10.1017\/CBO9781107298019"},{"key":"22_CR37","unstructured":"Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: NeurIPS (2020)"},{"key":"22_CR38","unstructured":"Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. (2014)"},{"key":"22_CR39","unstructured":"Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML (2019)"},{"key":"22_CR40","unstructured":"Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS (2017)"},{"key":"22_CR41","unstructured":"Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD birds-200-2011 dataset (2011)"},{"key":"22_CR42","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-01261-8_1","volume-title":"Computer Vision \u2013 ECCV 2018","author":"Y Wu","year":"2018","unstructured":"Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3\u201319. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01261-8_1"},{"key":"22_CR43","doi-asserted-by":"crossref","unstructured":"Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.00612"},{"key":"22_CR44","unstructured":"Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)"},{"key":"22_CR45","doi-asserted-by":"crossref","unstructured":"Zhang, X., Xu, R., Yu, H., Zou, H., Cui, P.: Gradient norm aware minimization seeks first-order flatness and improves generalization. In: CVPR (2023)","DOI":"10.1109\/CVPR52729.2023.01939"},{"key":"22_CR46","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Xiang, T., Hospedales, T.M., Lu, H.: Deep mutual learning. In: CVPR (2018)","DOI":"10.1109\/CVPR.2018.00454"},{"key":"22_CR47","doi-asserted-by":"crossref","unstructured":"Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled knowledge distillation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (2022)","DOI":"10.1109\/CVPR52688.2022.01165"},{"key":"22_CR48","unstructured":"Zilly, J.G., Srivastava, R.K., Koutn\u00edk, J., Schmidhuber, J.: Recurrent highway networks. In: ICML, pp. 4189\u20134198 (2017)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72913-3_22","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T23:26:17Z","timestamp":1733095577000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72913-3_22"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12,2]]},"ISBN":["9783031729126","9783031729133"],"references-count":48,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72913-3_22","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,12,2]]},"assertion":[{"value":"2 December 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}