{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T21:23:49Z","timestamp":1743024229169,"version":"3.40.3"},"publisher-location":"Cham","reference-count":77,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031726637"},{"type":"electronic","value":"9783031726644"}],"license":[{"start":{"date-parts":[[2024,10,26]],"date-time":"2024-10-26T00:00:00Z","timestamp":1729900800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,26]],"date-time":"2024-10-26T00:00:00Z","timestamp":1729900800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-72664-4_16","type":"book-chapter","created":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T17:02:04Z","timestamp":1729875724000},"page":"278-297","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Challenging Forgets: Unveiling the\u00a0Worst-Case Forget Sets in\u00a0Machine Unlearning"],"prefix":"10.1007","author":[{"given":"Chongyu","family":"Fan","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0000-3650-3097","authenticated-orcid":false,"given":"Jiancheng","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2531-9670","authenticated-orcid":false,"given":"Alfred","family":"Hero","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2817-6991","authenticated-orcid":false,"given":"Sijia","family":"Liu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,26]]},"reference":[{"key":"16_CR1","doi-asserted-by":"crossref","unstructured":"Achille, A., Kearns, M., Klingenberg, C., Soatto, S.: AI model disgorgement: methods and choices. arXiv preprint arXiv:2304.03545 (2023)","DOI":"10.1073\/pnas.2307304121"},{"key":"16_CR2","unstructured":"Becker, A., Liebig, T.: Evaluating machine unlearning via epistemic uncertainty. arXiv preprint arXiv:2208.10836 (2022)"},{"key":"16_CR3","doi-asserted-by":"crossref","unstructured":"Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 41\u201348 (2009)","DOI":"10.1145\/1553374.1553380"},{"key":"16_CR4","unstructured":"Bernstein, J., Wang, Y.X., Azizzadenesheli, K., Anandkumar, A.: signSGD: compressed optimisation for non-convex problems. In: International Conference on Machine Learning, pp. 560\u2013569. PMLR (2018)"},{"key":"16_CR5","unstructured":"Borsos, Z., Mutny, M., Krause, A.: Coresets via bilevel optimization for continual learning and streaming. In: Advances in Neural Information Processing Systems, vol. 33, pp. 14879\u201314890 (2020)"},{"key":"16_CR6","doi-asserted-by":"crossref","unstructured":"Bourtoule, L., et al.: Machine unlearning. In: 2021 IEEE Symposium on Security and Privacy (SP), pp. 141\u2013159. IEEE (2021)","DOI":"10.1109\/SP40001.2021.00019"},{"key":"16_CR7","doi-asserted-by":"crossref","unstructured":"Cao, Y., Yang, J.: Towards making systems forget with machine unlearning. In: 2015 IEEE Symposium on Security and Privacy, pp. 463\u2013480. IEEE (2015)","DOI":"10.1109\/SP.2015.35"},{"key":"16_CR8","doi-asserted-by":"crossref","unstructured":"Carlini, N., Chien, S., Nasr, M., Song, S., Terzis, A., Tramer, F.: Membership inference attacks from first principles. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 1897\u20131914. IEEE (2022)","DOI":"10.1109\/SP46214.2022.9833649"},{"key":"16_CR9","unstructured":"Che, T., et al.: Fast federated machine unlearning with nonlinear functional theory (2023)"},{"key":"16_CR10","doi-asserted-by":"crossref","unstructured":"Chen, M., Gao, W., Liu, G., Peng, K., Wang, C.: Boundary unlearning: rapid forgetting of deep networks via shifting the decision boundary. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7766\u20137775 (2023)","DOI":"10.1109\/CVPR52729.2023.00750"},{"key":"16_CR11","doi-asserted-by":"crossref","unstructured":"Chen, M., Zhang, Z., Wang, T., Backes, M., Humbert, M., Zhang, Y.: Graph unlearning. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 499\u2013513 (2022)","DOI":"10.1145\/3548606.3559352"},{"key":"16_CR12","unstructured":"Chen, R., et al.: Fast model debias with machine unlearning. In: Advances in Neural Information Processing Systems, vol. 36 (2024)"},{"key":"16_CR13","unstructured":"Cheng, J., Dasoulas, G., He, H., Agarwal, C., Zitnik, M.: GNNDelete: a general strategy for unlearning in graph neural networks. arXiv preprint arXiv:2302.13406 (2023)"},{"key":"16_CR14","unstructured":"Chien, E., Pan, C., Milenkovic, O.: Certified graph unlearning. arXiv preprint arXiv:2206.09140 (2022)"},{"key":"16_CR15","unstructured":"Coleman, C., et al.: Selection via proxy: efficient data selection for deep learning. arXiv preprint arXiv:1906.11829 (2019)"},{"key":"16_CR16","unstructured":"Cotogni, M., Bonato, J., Sabetta, L., Pelosin, F., Nicolosi, A.: DUCK: distance-based unlearning via centroid kinematics. arXiv preprint arXiv:2312.02052 (2023)"},{"key":"16_CR17","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255. IEEE (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"16_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"486","DOI":"10.1007\/11761679_29","volume-title":"Advances in Cryptology - EUROCRYPT 2006","author":"C Dwork","year":"2006","unstructured":"Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486\u2013503. Springer, Heidelberg (2006). https:\/\/doi.org\/10.1007\/11761679_29"},{"key":"16_CR19","unstructured":"Eldan, R., Russinovich, M.: Who\u2019s harry potter? Approximate unlearning in LLMs (2023)"},{"key":"16_CR20","unstructured":"Fan, C., Liu, J., Zhang, Y., Wei, D., Wong, E., Liu, S.: SalUn: empowering machine unlearning via gradient-based weight saliency in both image classification and generation. arXiv preprint arXiv:2310.12508 (2023)"},{"key":"16_CR21","doi-asserted-by":"crossref","unstructured":"Gandikota, R., Materzynska, J., Fiotto-Kaufman, J., Bau, D.: Erasing concepts from diffusion models. arXiv preprint arXiv:2303.07345 (2023)","DOI":"10.1109\/ICCV51070.2023.00230"},{"key":"16_CR22","doi-asserted-by":"crossref","unstructured":"Gandikota, R., Orgad, H., Belinkov, Y., Materzy\u0144ska, J., Bau, D.: Unified concept editing in diffusion models. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, pp. 5111\u20135120 (2024)","DOI":"10.1109\/WACV57701.2024.00503"},{"key":"16_CR23","unstructured":"Ginart, A., Guan, M., Valiant, G., Zou, J.Y.: Making AI forget you: data deletion in machine learning. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"key":"16_CR24","unstructured":"Goel, S., Prabhu, A., Sanyal, A., Lim, S.N., Torr, P., Kumaraguru, P.: Towards adversarial evaluations for inexact machine unlearning. arXiv preprint arXiv:2201.06640 (2022)"},{"key":"16_CR25","doi-asserted-by":"crossref","unstructured":"Golatkar, A., Achille, A., Soatto, S.: Eternal sunshine of the spotless net: selective forgetting in deep networks. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9304\u20139312 (2020)","DOI":"10.1109\/CVPR42600.2020.00932"},{"key":"16_CR26","doi-asserted-by":"crossref","unstructured":"Graves, L., Nagisetty, V., Ganesh, V.: Amnesiac machine learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a035, pp. 11516\u201311524 (2021)","DOI":"10.1609\/aaai.v35i13.17371"},{"key":"16_CR27","unstructured":"Guo, C., Goldstein, T., Hannun, A., Van Der\u00a0Maaten, L.: Certified data removal from machine learning models. arXiv preprint arXiv:1911.03030 (2019)"},{"key":"16_CR28","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"16_CR29","unstructured":"Heng, A., Soh, H.: Selective amnesia: a continual learning approach to forgetting in deep generative models (2023)"},{"issue":"1","key":"16_CR30","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1080\/13600834.2019.1573501","volume":"28","author":"CJ Hoofnagle","year":"2019","unstructured":"Hoofnagle, C.J., van der Sloot, B., Borgesius, F.Z.: The European union general data protection regulation: what it is and what it means. Inf. Commun. Technol. Law 28(1), 65\u201398 (2019)","journal-title":"Inf. Commun. Technol. Law"},{"key":"16_CR31","unstructured":"Huggins, J., Campbell, T., Broderick, T.: Coresets for scalable Bayesian logistic regression. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"key":"16_CR32","unstructured":"Izzo, Z., Smart, M.A., Chaudhuri, K., Zou, J.: Approximate data deletion from machine learning models. In: International Conference on Artificial Intelligence and Statistics, pp. 2008\u20132016. PMLR (2021)"},{"key":"16_CR33","unstructured":"Jia, J., et al.: Model sparsity can simplify machine unlearning. In: Advances in Neural Information Processing Systems, vol. 36 (2023)"},{"key":"16_CR34","doi-asserted-by":"crossref","unstructured":"Kim, S., Bae, S., Yun, S.Y.: Coreset sampling from open-set for fine-grained self-supervised learning. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7537\u20137547 (2023)","DOI":"10.1109\/CVPR52729.2023.00728"},{"key":"16_CR35","doi-asserted-by":"publisher","unstructured":"Krantz, S.G., Parks, H.R.: The Implicit Function Theorem: History, Theory, and Applications. Springer, New York (2002). https:\/\/doi.org\/10.1007\/978-1-4614-5981-1","DOI":"10.1007\/978-1-4614-5981-1"},{"key":"16_CR36","unstructured":"Krizhevsky, A., Hinton, G., et\u00a0al.: Learning multiple layers of features from tiny images (2009)"},{"key":"16_CR37","doi-asserted-by":"crossref","unstructured":"Kumari, N., Zhang, B., Wang, S.Y., Shechtman, E., Zhang, R., Zhu, J.Y.: Ablating concepts in text-to-image diffusion models (2023)","DOI":"10.1109\/ICCV51070.2023.02074"},{"key":"16_CR38","unstructured":"Kurmanji, M., Triantafillou, P., Triantafillou, E.: Towards unbounded machine unlearning. arXiv preprint arXiv:2302.09880 (2023)"},{"key":"16_CR39","unstructured":"Liu, S., et\u00a0al.: Rethinking machine unlearning for large language models. arXiv preprint arXiv:2402.08787 (2024)"},{"key":"16_CR40","doi-asserted-by":"crossref","unstructured":"Liu, Y., et al.: Backdoor defense with machine unlearning. arXiv preprint arXiv:2201.09538 (2022)","DOI":"10.1109\/INFOCOM48880.2022.9796974"},{"key":"16_CR41","doi-asserted-by":"crossref","unstructured":"Liu, Y., Xu, L., Yuan, X., Wang, C., Li, B.: The right to be forgotten in federated learning: an efficient realization with rapid retraining. arXiv preprint arXiv:2203.07320 (2022)","DOI":"10.1109\/INFOCOM48880.2022.9796721"},{"key":"16_CR42","doi-asserted-by":"crossref","unstructured":"Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3730\u20133738 (2015)","DOI":"10.1109\/ICCV.2015.425"},{"key":"16_CR43","unstructured":"Mirzasoleiman, B., Bilmes, J., Leskovec, J.: Coresets for data-efficient training of machine learning models. In: International Conference on Machine Learning, pp. 6950\u20136960. PMLR (2020)"},{"key":"16_CR44","unstructured":"Neel, S., Roth, A., Sharifi-Malvajerdi, S.: Descent-to-delete: gradient-based methods for machine unlearning. In: Algorithmic Learning Theory, pp. 931\u2013962. PMLR (2021)"},{"key":"16_CR45","unstructured":"Nguyen, T.T., Huynh, T.T., Nguyen, P.L., Liew, A.W.C., Yin, H., Nguyen, Q.V.H.: A survey of machine unlearning. arXiv preprint arXiv:2209.02299 (2022)"},{"key":"16_CR46","unstructured":"Oesterling, A., Ma, J., Calmon, F.P., Lakkaraju, H.: Fair machine unlearning: data removal while mitigating disparities. arXiv preprint arXiv:2307.14754 (2023)"},{"key":"16_CR47","unstructured":"Paul, M., Ganguli, S., Dziugaite, G.K.: Deep learning on a data diet: finding important examples early in training. In: Advances in Neural Information Processing Systems, vol. 34, pp. 20596\u201320607 (2021)"},{"key":"16_CR48","unstructured":"Pruthi, G., Liu, F., Kale, S., Sundararajan, M.: Estimating training data influence by tracing gradient descent. In: Advances in Neural Information Processing Systems, vol. 33, pp. 19920\u201319930 (2020)"},{"key":"16_CR49","doi-asserted-by":"crossref","unstructured":"Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684\u201310695 (2022)","DOI":"10.1109\/CVPR52688.2022.01042"},{"key":"16_CR50","first-page":"88","volume":"64","author":"J Rosen","year":"2011","unstructured":"Rosen, J.: The right to be forgotten. Stan. L. Rev. Online 64, 88 (2011)","journal-title":"Stan. L. Rev. Online"},{"key":"16_CR51","unstructured":"Sagawa, S., Raghunathan, A., Koh, P.W., Liang, P.: An investigation of why overparameterization exacerbates spurious correlations. In: International Conference on Machine Learning, pp. 8346\u20138356. PMLR (2020)"},{"key":"16_CR52","unstructured":"Sattigeri, P., Ghosh, S., Padhi, I., Dognin, P., Varshney, K.R.: Fair infinitesimal jackknife: mitigating the influence of biased training data points without refitting. In: Advances in Neural Information Processing Systems (2022)"},{"key":"16_CR53","doi-asserted-by":"crossref","unstructured":"Schioppa, A., Zablotskaia, P., Vilar, D., Sokolov, A.: Scaling up influence functions. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a036, pp. 8179\u20138186 (2022)","DOI":"10.1609\/aaai.v36i8.20791"},{"key":"16_CR54","unstructured":"Sekhari, A., Acharya, J., Kamath, G., Suresh, A.T.: Remember what you want to forget: algorithms for machine unlearning. In: Advances in Neural Information Processing Systems, vol. 34, pp. 18075\u201318086 (2021)"},{"key":"16_CR55","unstructured":"Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set approach. arXiv preprint arXiv:1708.00489 (2017)"},{"key":"16_CR56","unstructured":"Shaban, A., Cheng, C.A., Hatch, N., Boots, B.: Truncated back-propagation for bilevel optimization. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1723\u20131732. PMLR (2019)"},{"key":"16_CR57","doi-asserted-by":"crossref","unstructured":"Shokri, R., Stronati, M., Song, C., Shmatikov, V.: Membership inference attacks against machine learning models. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 3\u201318. IEEE (2017)","DOI":"10.1109\/SP.2017.41"},{"key":"16_CR58","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)"},{"key":"16_CR59","unstructured":"Song, L., Mittal, P.: Systematic evaluation of privacy risks of machine learning models. In: 30th USENIX Security Symposium (USENIX Security 2021), pp. 2615\u20132632 (2021)"},{"key":"16_CR60","doi-asserted-by":"crossref","unstructured":"Thudi, A., Deza, G., Chandrasekaran, V., Papernot, N.: Unrolling SGD: understanding factors influencing machine unlearning. In: 2022 IEEE 7th European Symposium on Security and Privacy (EuroS &P), pp. 303\u2013319. IEEE (2022)","DOI":"10.1109\/EuroSP53844.2022.00027"},{"key":"16_CR61","unstructured":"Thudi, A., Jia, H., Shumailov, I., Papernot, N.: On the necessity of auditable algorithmic definitions for machine unlearning. In: 31st USENIX Security Symposium (USENIX Security 2022), pp. 4007\u20134022 (2022)"},{"key":"16_CR62","unstructured":"Ullah, E., Mai, T., Rao, A., Rossi, R.A., Arora, R.: Machine unlearning via algorithmic stability. In: Conference on Learning Theory, pp. 4126\u20134142. PMLR (2021)"},{"key":"16_CR63","doi-asserted-by":"crossref","unstructured":"Wang, J., Guo, S., Xie, X., Qi, H.: Federated unlearning via class-discriminative pruning. In: Proceedings of the ACM Web Conference 2022, pp. 622\u2013632 (2022)","DOI":"10.1145\/3485447.3512222"},{"key":"16_CR64","unstructured":"Warnecke, A., Pirch, L., Wressnegger, C., Rieck, K.: Machine unlearning of features and labels. arXiv preprint arXiv:2108.11577 (2021)"},{"issue":"5","key":"16_CR65","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1109\/MNET.001.2200198","volume":"36","author":"L Wu","year":"2022","unstructured":"Wu, L., Guo, S., Wang, J., Hong, Z., Zhang, J., Ding, Y.: Federated unlearning: guarantee the right of clients to forget. IEEE Netw. 36(5), 129\u2013135 (2022)","journal-title":"IEEE Netw."},{"key":"16_CR66","doi-asserted-by":"crossref","unstructured":"Wu, X., et al.: DEPN: detecting and editing privacy neurons in pretrained language models. arXiv preprint arXiv:2310.20138 (2023)","DOI":"10.18653\/v1\/2023.emnlp-main.174"},{"key":"16_CR67","unstructured":"Xia, X., Liu, J., Yu, J., Shen, X., Han, B., Liu, T.: Moderate coreset: a universal method of data selection for real-world data-efficient deep learning. In: The Eleventh International Conference on Learning Representations (2022)"},{"key":"16_CR68","unstructured":"Yang, S., Xie, Z., Peng, H., Xu, M., Sun, M., Li, P.: Dataset pruning: Reducing training data by examining generalization influence. arXiv preprint arXiv:2205.09329 (2022)"},{"key":"16_CR69","unstructured":"Yao, Y., Xu, X., Liu, Y.: Large language model unlearning. arXiv preprint arXiv:2310.10683 (2023)"},{"key":"16_CR70","doi-asserted-by":"crossref","unstructured":"Yu, C., Jeoung, S., Kasi, A., Yu, P., Ji, H.: Unlearning bias in language models by partitioning gradients. In: Findings of the Association for Computational Linguistics: ACL 2023, pp. 6032\u20136048 (2023)","DOI":"10.18653\/v1\/2023.findings-acl.375"},{"key":"16_CR71","unstructured":"Zeng, Y., Pan, M., Jahagirdar, H., Jin, M., Lyu, L., Jia, R.: How to sift out a clean data subset in the presence of data poisoning? arXiv preprint arXiv:2210.06516 (2022)"},{"key":"16_CR72","doi-asserted-by":"crossref","unstructured":"Zhang, E., Wang, K., Xu, X., Wang, Z., Shi, H.: Forget-me-not: learning to forget in text-to-image diffusion models. arXiv preprint arXiv:2303.17591 (2023)","DOI":"10.1109\/CVPRW63382.2024.00182"},{"key":"16_CR73","unstructured":"Zhang, J., Chen, S., Liu, J., He, J.: Composing parameter-efficient modules with arithmetic operations. arXiv preprint arXiv:2306.14870 (2023)"},{"key":"16_CR74","unstructured":"Zhang, Y., Khanduri, P., Tsaknakis, I., Yao, Y., Hong, M., Liu, S.: An introduction to bi-level optimization: foundations and applications in signal processing and machine learning. arXiv preprint arXiv:2308.00788 (2023)"},{"key":"16_CR75","unstructured":"Zhang, Y., et\u00a0al.: Selectivity drives productivity: efficient dataset pruning for enhanced transfer learning. In: Advances in Neural Information Processing Systems, vol. 36 (2024)"},{"key":"16_CR76","unstructured":"Zhang, Y., et al.: UnlearnCanvas: a stylized image dataset to benchmark machine unlearning for diffusion models. arXiv preprint arXiv:2402.11846 (2024)"},{"key":"16_CR77","doi-asserted-by":"crossref","unstructured":"Zhang, Y., et al.: To generate or not? Safety-driven unlearned diffusion models are still easy to generate unsafe images... for now. arXiv preprint arXiv:2310.11868 (2023)","DOI":"10.1007\/978-3-031-72998-0_22"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72664-4_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T17:06:34Z","timestamp":1729875994000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72664-4_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,26]]},"ISBN":["9783031726637","9783031726644"],"references-count":77,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72664-4_16","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,10,26]]},"assertion":[{"value":"26 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}