{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T04:07:59Z","timestamp":1730174879658,"version":"3.28.0"},"publisher-location":"Cham","reference-count":50,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031726392","type":"print"},{"value":"9783031726408","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T00:00:00Z","timestamp":1730160000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T00:00:00Z","timestamp":1730160000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-72640-8_3","type":"book-chapter","created":{"date-parts":[[2024,10,28]],"date-time":"2024-10-28T09:34:20Z","timestamp":1730108060000},"page":"39-56","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Learning 3D-Aware GANs from\u00a0Unposed Images with\u00a0Template Feature Field"],"prefix":"10.1007","author":[{"given":"Xinya","family":"Chen","sequence":"first","affiliation":[]},{"given":"Hanlei","family":"Guo","sequence":"additional","affiliation":[]},{"given":"Yanrui","family":"Bin","sequence":"additional","affiliation":[]},{"given":"Shangzhan","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yuanbo","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Yue","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yujun","family":"Shen","sequence":"additional","affiliation":[]},{"given":"Yiyi","family":"Liao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,29]]},"reference":[{"key":"3_CR1","unstructured":"Amir, S., Gandelsman, Y., Bagon, S., Dekel, T.: Deep vit features as dense visual descriptors. ECCVW What is Motion For? (2022)"},{"key":"3_CR2","doi-asserted-by":"crossref","unstructured":"Caron, M., Touvron, H., Misra, I., J\u00e9gou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. In: Proceedings of the International Conference on Computer Vision (ICCV) (2021)","DOI":"10.1109\/ICCV48922.2021.00951"},{"key":"3_CR3","doi-asserted-by":"crossref","unstructured":"Chan, E.R., et al.: Efficient geometry-aware 3d generative adversarial networks. In: CVPR (2022)","DOI":"10.1109\/CVPR52688.2022.01565"},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. In: IEEE Conf. Comput. Vis. Pattern Recog. (2022)","DOI":"10.1109\/CVPR52688.2022.01565"},{"key":"3_CR5","doi-asserted-by":"crossref","unstructured":"Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: Pi-gan: periodic implicit generative adversarial networks for 3d-aware image synthesis. In: IEEE Conf. Comput. Vis. Pattern Recog. (2021)","DOI":"10.1109\/CVPR46437.2021.00574"},{"key":"3_CR6","unstructured":"Chang, A.X., et al.: Shapenet: an information-rich 3d model repository. arXiv.org1512.03012 (2015)"},{"key":"3_CR7","doi-asserted-by":"crossref","unstructured":"Chen, X., Deng, Y., Wang, B.: Mimic3d: thriving 3d-aware gans via 3d-to-2d imitation. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV) (2023)","DOI":"10.1109\/ICCV51070.2023.00222"},{"key":"3_CR8","doi-asserted-by":"crossref","unstructured":"Chen, X., Huang, J., Bin, Y., Yu, L., Liao, Y.: Veri3d: generative vertex-based radiance fields for 3d controllable human image synthesis. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision (ICCV), pp. 8986\u20138997 (October 2023)","DOI":"10.1109\/ICCV51070.2023.00825"},{"key":"3_CR9","unstructured":"Chen, Z., Xu, X., Wang, Y., Xiong, R.: Deep phase correlation for end-to-end heterogeneous sensor measurements matching. In: Proceedings of the 2020 Conference on Robot Learning. Proceedings of Machine Learning Research, vol.\u00a0155, pp. 2359\u20132375. PMLR (16\u201318 Nov 2021). https:\/\/proceedings.mlr.press\/v155\/chen21g.html"},{"key":"3_CR10","doi-asserted-by":"crossref","unstructured":"Deng, K., Liu, A., Zhu, J., Ramanan, D.: Depth-supervised nerf: Fewer views and faster training for free. arXiv.org 2107.02791 (2021)","DOI":"10.1109\/CVPR52688.2022.01254"},{"key":"3_CR11","doi-asserted-by":"crossref","unstructured":"Deng, Y., Yang, J., Xiang, J., Tong, X.: Gram: generative radiance manifolds for 3d-aware image generation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10673\u201310683 (2022)","DOI":"10.1109\/CVPR52688.2022.01041"},{"key":"3_CR12","unstructured":"Gu, J., Liu, L., Wang, P., Theobalt, C.: Stylenerf: A style-based 3d-aware generator for high-resolution image synthesis. Int. Conf. Learn Represent (2022)"},{"key":"3_CR13","doi-asserted-by":"crossref","unstructured":"Henzler, P., Mitra, N.J., Ritschel, T.: Escaping plato\u2019s cave: 3d shape from adversarial rendering. In: Int. Conf. Comput. Vis. (2019)","DOI":"10.1109\/ICCV.2019.01008"},{"key":"3_CR14","unstructured":"Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Adv. Neural Inform. Process. Syst. (2017)"},{"key":"3_CR15","doi-asserted-by":"crossref","unstructured":"Jo, K., Jin, W., Choo, J., Lee, H., Cho, S.: 3d-aware generative model for improved side-view image synthesis. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 22862\u201322872 (2023)","DOI":"10.1109\/ICCV51070.2023.02090"},{"key":"3_CR16","unstructured":"Jo, K., Shim, G., Jung, S., Yang, S., Choo, J.: Cg-nerf: conditional generative neural radiance fields. arXiv.org (2021)"},{"key":"3_CR17","doi-asserted-by":"crossref","unstructured":"Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proc. CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00813"},{"key":"3_CR18","doi-asserted-by":"crossref","unstructured":"Kerr, J., Kim, C.M., Goldberg, K., Kanazawa, A., Tancik, M.: Lerf: language embedded radiance fields. In: International Conference on Computer Vision (ICCV) (2023)","DOI":"10.1109\/ICCV51070.2023.01807"},{"key":"3_CR19","unstructured":"Kobayashi, S., Matsumoto, E., Sitzmann, V.: Decomposing nerf for editing via feature field distillation. In: Advances in Neural Information Processing Systems, vol.\u00a035 (2022). https:\/\/arxiv.org\/pdf\/2205.15585.pdf"},{"key":"3_CR20","unstructured":"Kuglin, C.D.: The phase correlation image alignment method (1975). https:\/\/api.semanticscholar.org\/CorpusID:61133413"},{"key":"3_CR21","doi-asserted-by":"crossref","unstructured":"Liao, Y., Schwarz, K., Mescheder, L., Geiger, A.: Towards unsupervised learning of generative models for 3d controllable image synthesis. In: IEEE Conf. Comput. Vis. Pattern Recog. (2020)","DOI":"10.1109\/CVPR42600.2020.00591"},{"key":"3_CR22","unstructured":"Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for gans do actually converge? In: Int. Conf. Mach. Learn. (2018)"},{"key":"3_CR23","unstructured":"Michael, N., Andreas, G.: Giraffe: Representing scenes as compositional generative neural feature fields. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2021, pp. 11453\u201311464. IEEE Computer Society (2021)"},{"key":"3_CR24","doi-asserted-by":"crossref","unstructured":"Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Eur. Conf. Comput. Vis. (2020)","DOI":"10.1007\/978-3-030-58452-8_24"},{"key":"3_CR25","doi-asserted-by":"crossref","unstructured":"Mokady, R., et al.: Self-distilled stylegan: towards generation from internet photos (2022)","DOI":"10.1145\/3528233.3530708"},{"key":"3_CR26","doi-asserted-by":"crossref","unstructured":"Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.: Hologan: Unsupervised learning of 3d representations from natural images. In: Int. Conf. Comput. Vis. (2019)","DOI":"10.1109\/ICCV.2019.00768"},{"key":"3_CR27","doi-asserted-by":"crossref","unstructured":"Niemeyer, M., Geiger, A.: Campari: Camera-aware decomposed generative neural radiance fields (2021)","DOI":"10.1109\/3DV53792.2021.00103"},{"key":"3_CR28","doi-asserted-by":"crossref","unstructured":"Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J., Kemelmacher, I.: Stylesdf: high-resolution 3d-consistent image and geometry generation. In: IEEE Conf. Comput. Vis. Pattern Recog. (2022)","DOI":"10.1109\/CVPR52688.2022.01314"},{"key":"3_CR29","unstructured":"Pan, X., Xu, X., Loy, C.C., Theobalt, C., Dai, B.: A shading-guided generative implicit model for shape-accurate 3d-aware image synthesis. In: Adv. Neural Inform. Process. Syst. (2021)"},{"key":"3_CR30","doi-asserted-by":"crossref","unstructured":"Peng, S., Liu, Y., Huang, Q.X., Bao, H., Zhou, X.: Pvnet: pixel-wise voting network for 6dof pose estimation. In: 2019 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4556\u20134565 (2018). https:\/\/api.semanticscholar.org\/CorpusID:57189382","DOI":"10.1109\/CVPR.2019.00469"},{"key":"3_CR31","unstructured":"Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: Graf: generative radiance fields for 3d-aware image synthesis. In: Adv. Neural Inform. Process. Syst. (2020)"},{"key":"3_CR32","volume-title":"Voxgraf: Fast 3d-aware image synthesis with sparse voxel grids","author":"K Schwarz","year":"2022","unstructured":"Schwarz, K., Sauer, A., Niemeyer, M., Liao, Y., Geiger, A.: Voxgraf: Fast 3d-aware image synthesis with sparse voxel grids. Adv. Neural Inform. Process, Syst. (2022)"},{"key":"3_CR33","doi-asserted-by":"crossref","unstructured":"Shi, Z., et al.: Learning 3d-aware image synthesis with unknown pose distribution (2023)","DOI":"10.1109\/CVPR52729.2023.01255"},{"key":"3_CR34","doi-asserted-by":"crossref","unstructured":"Shin, M., et al.: Ballgan: 3d-aware image synthesis with a spherical background. arXiv preprint arXiv:2301.09091 (2023)","DOI":"10.1109\/ICCV51070.2023.00668"},{"key":"3_CR35","unstructured":"Skorokhodov, I., et al.: 3d generation on imagenet. In: International Conference on Learning Representations (2023). https:\/\/openreview.net\/forum?id=U2WjB9xxZ9q"},{"key":"3_CR36","doi-asserted-by":"crossref","unstructured":"Sun, J., Wang, X., Zhang, Y., Li, X., Zhang, Q., Liu, Y., Wang, J.: Fenerf: face editing in neural radiance fields. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 7672\u20137682 (2022)","DOI":"10.1109\/CVPR52688.2022.00752"},{"key":"3_CR37","doi-asserted-by":"crossref","unstructured":"Tschernezki, V., Laina, I., Larlus, D., Vedaldi, A.: Neural feature fusion fields: 3D distillation of self-supervised 2D image representations. In: Proceedings of the International Conference on 3D Vision (3DV) (2022)","DOI":"10.1109\/3DV57658.2022.00056"},{"key":"3_CR38","unstructured":"Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https:\/\/github.com\/facebookresearch\/detectron2 (2019)"},{"key":"3_CR39","doi-asserted-by":"crossref","unstructured":"Xiang, J., Yang, J., Deng, Y., Tong, X.: Gram-hd: 3d-consistent image generation at high resolution with generative radiance manifolds. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 2195\u20132205 (2023)","DOI":"10.1109\/ICCV51070.2023.00209"},{"key":"3_CR40","unstructured":"Xu, X., Pan, X., Lin, D., Dai, B.: Generative occupancy fields for 3d surface-aware image synthesis. In: Adv. Neural Inform. Process. Syst. (2021)"},{"key":"3_CR41","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR52688.2022.01788","volume-title":"3d-aware image synthesis via learning structural and textural representations","author":"Y Xu","year":"2022","unstructured":"Xu, Y., Peng, S., Yang, C., Shen, Y., Zhou, B.: 3d-aware image synthesis via learning structural and textural representations. IEEE Conf. Comput. Vis, Pattern Recogn. (2022)"},{"key":"3_CR42","doi-asserted-by":"crossref","unstructured":"Xue, Y., Li, Y., Singh, K.K., Lee, Y.J.: Giraffe hd: a high-resolution 3d-aware generative model. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 18440\u201318449 (2022)","DOI":"10.1109\/CVPR52688.2022.01789"},{"key":"3_CR43","unstructured":"Yang, J., et al.: Emernerf: emergent spatial-temporal scene decomposition via self-supervision. arXiv preprint arXiv:2311.02077 (2023)"},{"key":"3_CR44","doi-asserted-by":"publisher","unstructured":"Yang, L., Luo, P., Loy, C.C., Tang, X.: A large-scale car dataset for fine-grained categorization and verification. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp. 3973\u20133981. IEEE Computer Society (2015). https:\/\/doi.org\/10.1109\/CVPR.2015.7299023","DOI":"10.1109\/CVPR.2015.7299023"},{"key":"3_CR45","doi-asserted-by":"crossref","unstructured":"Yin, W., et al.: Learning to recover 3d scene shape from a single image. In: Proc. IEEE Conf. Comp. Vis. Patt. Recogn. (CVPR) (2021)","DOI":"10.1109\/CVPR46437.2021.00027"},{"key":"3_CR46","doi-asserted-by":"publisher","unstructured":"Yu, F., Wang, X., Li, Z., Cao, Y., Shan, Y., Dong, C.: GET3D-: learning GET3D from unconstrained image collections. CoRR abs\/2307.14918 (2023). https:\/\/doi.org\/10.48550\/ARXIV.2307.14918","DOI":"10.48550\/ARXIV.2307.14918"},{"key":"3_CR47","unstructured":"Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv.org 1506.03365 (2015)"},{"key":"3_CR48","doi-asserted-by":"crossref","unstructured":"Zhao, X., Ma, F., G\u00fcera, D., Ren, Z., Schwing, A.G., Colburn, A.: Generative multiplane images: Making a 2d gan 3d-aware. In: Proc. ECCV (2022)","DOI":"10.1007\/978-3-031-20065-6_2"},{"key":"3_CR49","doi-asserted-by":"crossref","unstructured":"Zhao, X., Zhao, Z., Schwing, A.G.: Initialization and alignment for adversarial texture optimization. In: European Conference on Computer Vision (ECCV) (2022)","DOI":"10.1007\/978-3-031-19812-0_37"},{"key":"3_CR50","unstructured":"Zhou, P., Xie, L., Ni, B., Tian, Q.: CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. arXiv.org (2021)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72640-8_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,28]],"date-time":"2024-10-28T09:39:29Z","timestamp":1730108369000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72640-8_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,29]]},"ISBN":["9783031726392","9783031726408"],"references-count":50,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72640-8_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,10,29]]},"assertion":[{"value":"29 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}