{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:44:20Z","timestamp":1742913860856,"version":"3.40.3"},"publisher-location":"Cham","reference-count":40,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031726262"},{"type":"electronic","value":"9783031726279"}],"license":[{"start":{"date-parts":[[2024,10,20]],"date-time":"2024-10-20T00:00:00Z","timestamp":1729382400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,10,20]],"date-time":"2024-10-20T00:00:00Z","timestamp":1729382400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"DOI":"10.1007\/978-3-031-72627-9_5","type":"book-chapter","created":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T21:02:10Z","timestamp":1729371730000},"page":"75-91","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Self-supervised Feature Adaptation for\u00a03D Industrial Anomaly Detection"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0009-0006-2978-666X","authenticated-orcid":false,"given":"Yuanpeng","family":"Tu","sequence":"first","affiliation":[]},{"given":"Boshen","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Liang","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Yuxi","family":"Li","sequence":"additional","affiliation":[]},{"given":"Jiangning","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Yabiao","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Chengjie","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Cairong","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,20]]},"reference":[{"key":"5_CR1","first-page":"1","volume":"71","author":"X Tao","year":"2022","unstructured":"Tao, X., Gong, X., Zhang, X., Yan, S., Adak, C.: Deep learning for unsupervised anomaly localization in industrial images: a survey. TIM 71, 1\u201321 (2022)","journal-title":"TIM"},{"key":"5_CR2","doi-asserted-by":"crossref","unstructured":"Wang, Y., Peng, J., Zhang, J., Yi, R., Wang, Y., Wang, C.: Multimodal industrial anomaly detection via hybrid fusion. In: CVPR (2023)","DOI":"10.1109\/CVPR52729.2023.00776"},{"key":"5_CR3","unstructured":"Real3d-ad: a dataset of point cloud anomaly detection. arXiv (2023)"},{"issue":"1","key":"5_CR4","first-page":"104","volume":"21","author":"J Liu","year":"2024","unstructured":"Liu, J., et al.: Deep industrial image anomaly detection: a survey. MIR 21(1), 104\u2013135 (2024)","journal-title":"MIR"},{"key":"5_CR5","unstructured":"Ahuja, N.A., Ndiour, I., Kalyanpur, T., Tickoo, O.: Probabilistic modeling of deep features for out-of-distribution and adversarial detection. arXiv preprint arXiv:1909.11786 (2019)"},{"key":"5_CR6","doi-asserted-by":"crossref","unstructured":"Akcay, S., Ameln, D., Vaidya, A., Lakshmanan, B., Ahuja, N., Genc, U.: Anomalib: a deep learning library for anomaly detection. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 1706\u20131710. IEEE (2022)","DOI":"10.1109\/ICIP46576.2022.9897283"},{"key":"5_CR7","doi-asserted-by":"crossref","unstructured":"Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: Ganomaly: semi-supervised anomaly detection via adversarial training. In: ACCV (2019)","DOI":"10.1007\/978-3-030-20893-6_39"},{"key":"5_CR8","doi-asserted-by":"crossref","unstructured":"Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD\u2013a comprehensive real-world dataset for unsupervised anomaly detection. In: CVPR (2019)","DOI":"10.1109\/CVPR.2019.00982"},{"key":"5_CR9","doi-asserted-by":"crossref","unstructured":"Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Uninformed students: student-teacher anomaly detection with discriminative latent embeddings. In: CVPR (2020)","DOI":"10.1109\/CVPR42600.2020.00424"},{"key":"5_CR10","doi-asserted-by":"crossref","unstructured":"Bergmann, P., Jin, X., Sattlegger, D., Steger, C.: The MVTec 3D-AD dataset for unsupervised 3D anomaly detection and localization. In: VISIGRAPP (2022)","DOI":"10.5220\/0010865000003124"},{"key":"5_CR11","doi-asserted-by":"crossref","unstructured":"Bergmann, P., Sattlegger, D.: Anomaly detection in 3D point clouds using deep geometric descriptors. arXiv preprint arXiv:2202.11660 (2022)","DOI":"10.1109\/WACV56688.2023.00264"},{"key":"5_CR12","doi-asserted-by":"crossref","unstructured":"Bonfiglioli, L., Toschi, M., Silvestri, D., Fioraio, N., De\u00a0Gregorio, D.: The eyecandies dataset for unsupervised multimodal anomaly detection and localization. In: ACCV (2022)","DOI":"10.1007\/978-3-031-26348-4_27"},{"key":"5_CR13","doi-asserted-by":"crossref","unstructured":"Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: ICCV, pp. 9650\u20139660 (2021)","DOI":"10.1109\/ICCV48922.2021.00951"},{"key":"5_CR14","unstructured":"Chang, A.X., et al.: Shapenet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)"},{"key":"5_CR15","doi-asserted-by":"crossref","unstructured":"Chen, R., et al.: Easynet: an easy network for 3D industrial anomaly detection. In: Proceedings of the 31st ACM International Conference on Multimedia (2023)","DOI":"10.1145\/3581783.3611876"},{"key":"5_CR16","doi-asserted-by":"crossref","unstructured":"Defard, T., Setkov, A., Loesch, A., Audigier, R.: Padim: a patch distribution modeling framework for anomaly detection and localization. In: ICPR (2021)","DOI":"10.1007\/978-3-030-68799-1_35"},{"key":"5_CR17","doi-asserted-by":"crossref","unstructured":"Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. In: CVPR (2022)","DOI":"10.1109\/CVPR52688.2022.00951"},{"key":"5_CR18","unstructured":"Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"key":"5_CR19","doi-asserted-by":"crossref","unstructured":"Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: ICCV (2019)","DOI":"10.1109\/ICCV.2019.00179"},{"key":"5_CR20","doi-asserted-by":"crossref","unstructured":"Gudovskiy, D., Ishizaka, S., Kozuka, K.: CFLOW-AD: real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: WACV (2022)","DOI":"10.1109\/WACV51458.2022.00188"},{"key":"5_CR21","unstructured":"Horwitz, E., Hoshen, Y.: An empirical investigation of 3D anomaly detection and segmentation. arXiv preprint arXiv:2203.05550 (2022)"},{"key":"5_CR22","doi-asserted-by":"crossref","unstructured":"Hou, J., Zhang, Y., Zhong, Q., Xie, D., Pu, S., Zhou, H.: Divide-and-assemble: learning block-wise memory for unsupervised anomaly detection. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00867"},{"key":"5_CR23","unstructured":"Hu, E.J., et al.: Lora: low-rank adaptation of large language models. In: ICLR (2022)"},{"key":"5_CR24","doi-asserted-by":"publisher","first-page":"78446","DOI":"10.1109\/ACCESS.2022.3193699","volume":"10","author":"S Lee","year":"2022","unstructured":"Lee, S., Lee, S., Song, B.C.: CFA: coupled-hypersphere-based feature adaptation for target-oriented anomaly localization. IEEE Access 10, 78446\u201378454 (2022)","journal-title":"IEEE Access"},{"key":"5_CR25","doi-asserted-by":"crossref","unstructured":"Li, C.L., Sohn, K., Yoon, J., Pfister, T.: Cutpaste: self-supervised learning for anomaly detection and localization. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.00954"},{"key":"5_CR26","unstructured":"Liu, J., et al.: Deep industrial image anomaly detection: a survey. arXiv e-prints pp. arXiv-2301 (2023)"},{"key":"5_CR27","doi-asserted-by":"crossref","unstructured":"Pang, Y., Wang, W., Tay, F.E.H., Liu, W., Tian, Y., Yuan, L.: Masked autoencoders for point cloud self-supervised learning (2022)","DOI":"10.1007\/978-3-031-20086-1_35"},{"key":"5_CR28","doi-asserted-by":"crossref","unstructured":"Pang, Y., Wang, W., Tay, F.E., Liu, W., Tian, Y., Yuan, L.: Masked autoencoders for point cloud self-supervised learning. In: ECCV (2022)","DOI":"10.1007\/978-3-031-20086-1_35"},{"key":"5_CR29","doi-asserted-by":"crossref","unstructured":"Ristea, N.C., et al.: Self-supervised predictive convolutional attentive block for anomaly detection. In: CVPR (2022)","DOI":"10.1109\/CVPR52688.2022.01321"},{"key":"5_CR30","doi-asserted-by":"crossref","unstructured":"Roth, K., Pemula, L., Zepeda, J., Sch\u00f6lkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. In: CVPR (2022)","DOI":"10.1109\/CVPR52688.2022.01392"},{"key":"5_CR31","doi-asserted-by":"crossref","unstructured":"Rudolph, M., Wandt, B., Rosenhahn, B.: Same same but differnet: semi-supervised defect detection with normalizing flows. In: WACV (2021)","DOI":"10.1109\/WACV48630.2021.00195"},{"key":"5_CR32","doi-asserted-by":"crossref","unstructured":"Rudolph, M., Wehrbein, T., Rosenhahn, B., Wandt, B.: Asymmetric student-teacher networks for industrial anomaly detection. arXiv preprint arXiv:2210.07829 (2022)","DOI":"10.1109\/WACV56688.2023.00262"},{"key":"5_CR33","doi-asserted-by":"crossref","unstructured":"Salehi, M., Sadjadi, N., Baselizadeh, S., Rohban, M.H., Rabiee, H.R.: Multiresolution knowledge distillation for anomaly detection. In: CVPR (2021)","DOI":"10.1109\/CVPR46437.2021.01466"},{"key":"5_CR34","unstructured":"Wang, G., Han, S., Ding, E., Huang, D.: Student-teacher feature pyramid matching for anomaly detection. In: BMVC (2021)"},{"key":"5_CR35","doi-asserted-by":"crossref","unstructured":"Wu, J.C., Chen, D.J., Fuh, C.S., Liu, T.L.: Learning unsupervised metaformer for anomaly detection. In: ICCV (2021)","DOI":"10.1109\/ICCV48922.2021.00433"},{"issue":"3","key":"5_CR36","doi-asserted-by":"publisher","first-page":"1374","DOI":"10.1109\/TCSVT.2022.3211839","volume":"33","author":"K Wu","year":"2022","unstructured":"Wu, K., Zhu, L., Shi, W., Wang, W., Wu, J.: Self-attention memory-augmented wavelet-CNN for anomaly detection. IEEE Trans. Circ. Syst. Video Technol. 33(3), 1374\u20131385 (2022)","journal-title":"IEEE Trans. Circ. Syst. Video Technol."},{"key":"5_CR37","doi-asserted-by":"crossref","unstructured":"Yan, X., Zhang, H., Xu, X., Hu, X., Heng, P.A.: Learning semantic context from normal samples for unsupervised anomaly detection. In: AAAI (2021)","DOI":"10.1609\/aaai.v35i4.16420"},{"key":"5_CR38","unstructured":"Yu, J., et al.: Fastflow: unsupervised anomaly detection and localization via 2D normalizing flows. arXiv preprint arXiv:2111.07677 (2021)"},{"key":"5_CR39","doi-asserted-by":"crossref","unstructured":"Zavrtanik, V., Kristan, M., Sko\u010daj, D.: Cheating depth: enhancing 3D surface anomaly detection via depth simulation. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, pp. 2164\u20132172 (2024)","DOI":"10.1109\/WACV57701.2024.00216"},{"key":"5_CR40","unstructured":"Zhang, Q., et al.: Adaptive budget allocation for parameter-efficient fine-tuning. CoRR 2303.10512 (2023)"}],"container-title":["Lecture Notes in Computer Science","Computer Vision \u2013 ECCV 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72627-9_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T21:03:03Z","timestamp":1729371783000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72627-9_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10,20]]},"ISBN":["9783031726262","9783031726279"],"references-count":40,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72627-9_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024,10,20]]},"assertion":[{"value":"20 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECCV","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"European Conference on Computer Vision","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Milan","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eccv2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eccv2024.ecva.net\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}