{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T04:22:21Z","timestamp":1726806141024},"publisher-location":"Cham","reference-count":40,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031723803","type":"print"},{"value":"9783031723810","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T00:00:00Z","timestamp":1726790400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T00:00:00Z","timestamp":1726790400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2025]]},"abstract":"Abstract<\/jats:title>Understanding how solvation affects structure-property and property-property relationships of drug-like molecules is crucial for de novo<\/jats:italic> design, as most relevant reactions occur in aqueous environments. We have thus performed an exhaustive analysis of the recently proposed Aquamarine dataset to gain insights into the effect of solvent-molecule interaction on the quantum-mechanical (QM) properties of large drug-like molecules. Our results show that the inclusion of an implicit solvent model of water changes the values of (extensive and intensive) QM properties but it does not alter the correlations among them. Moreover, we have found that solvation can limit the identification of unique molecular conformations, with variations in specific properties being rationalized by the extent of structural changes. $$\\varDelta $$<\/jats:tex-math>\n \u0394<\/mml:mi>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula>-learning approach was used to predict solvent effects on the dipole moment $$\\mu $$<\/jats:tex-math>\n \u03bc<\/mml:mi>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula> and the many-body dispersion energy $$E_\\textrm{MBD}$$<\/jats:tex-math>\n \n E<\/mml:mi>\n MBD<\/mml:mtext>\n <\/mml:msub>\n <\/mml:math><\/jats:alternatives><\/jats:inline-formula>, resulting in more accurate and scalable predictive models compared to these directly trained on solvated properties. Hence, our work provides valuable insights into the effect of solvent-molecule interaction on physicochemical properties, which could assist in the development of machine-learning models for designing solvated molecules of pharmaceutical and biological relevance.<\/jats:p>","DOI":"10.1007\/978-3-031-72381-0_5","type":"book-chapter","created":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T13:10:16Z","timestamp":1726751416000},"page":"47-57","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Leveraging Quantum Mechanical Properties to\u00a0Predict Solvent Effects on\u00a0Large Drug-Like Molecules"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0008-9401-3262","authenticated-orcid":false,"given":"Mathias","family":"Hilfiker","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7673-3142","authenticated-orcid":false,"given":"Leonardo Medrano","family":"Sandonas","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9369-4819","authenticated-orcid":false,"given":"Marco","family":"Kl\u00e4hn","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4970-6461","authenticated-orcid":false,"given":"Ola","family":"Engkvist","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1012-4854","authenticated-orcid":false,"given":"Alexandre","family":"Tkatchenko","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,20]]},"reference":[{"issue":"1\u20132","key":"5_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/S0301-4622(98)00226-9","volume":"78","author":"B Roux","year":"1999","unstructured":"Roux, B., Simonson, T.: Implicit solvent models. Biophys. Chem. 78(1\u20132), 1\u201320 (1999)","journal-title":"Biophys. Chem."},{"key":"5_CR2","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1016\/j.ejmech.2014.08.064","volume":"91","author":"S Decherchi","year":"2015","unstructured":"Decherchi, S., Masetti, M., Vyalov, I., Rocchia, W.: Implicit solvent methods for free energy estimation. Eur. J. Med. Chem. 91, 27\u201342 (2015)","journal-title":"Eur. J. Med. Chem."},{"issue":"8","key":"5_CR3","doi-asserted-by":"publisher","first-page":"4052","DOI":"10.1021\/acs.jctc.6b00435","volume":"12","author":"S Ringe","year":"2016","unstructured":"Ringe, S., Oberhofer, H., Hille, C., Matera, S., Reuter, K.: Function-space-based solution scheme for the size-modified poisson-boltzmann equation in full-potential DFT. J. Chem. Theory Comput. 12(8), 4052\u20134066 (2016)","journal-title":"J. Chem. Theory Comput."},{"issue":"7","key":"5_CR4","doi-asserted-by":"publisher","first-page":"2224","DOI":"10.1021\/j100007a062","volume":"99","author":"A Klamt","year":"1995","unstructured":"Klamt, A.: Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99(7), 2224\u20132235 (1995)","journal-title":"J. Phys. Chem."},{"key":"5_CR5","doi-asserted-by":"publisher","first-page":"275","DOI":"10.1146\/annurev-biophys-052118-115325","volume":"48","author":"AV Onufriev","year":"2019","unstructured":"Onufriev, A.V., Case, D.A.: Generalized born implicit solvent models for biomolecules. Annu. Rev. Biophys. 48, 275\u2013296 (2019)","journal-title":"Annu. Rev. Biophys."},{"issue":"15","key":"5_CR6","doi-asserted-by":"publisher","first-page":"1404","DOI":"10.1002\/jcc.10164","volume":"23","author":"L Xie","year":"2002","unstructured":"Xie, L., Liu, H.: The treatment of solvation by a generalized born model and a self-consistent charge-density functional theory-based tight-binding method. J. Comput. Chem. 23(15), 1404\u20131415 (2002)","journal-title":"J. Comput. Chem."},{"key":"5_CR7","doi-asserted-by":"publisher","unstructured":"Hirata, F.: Molecular theory of solvation, vol.\u00a024. Springer Science & Business Media (2003).https:\/\/doi.org\/10.1007\/1-4020-2590-4","DOI":"10.1007\/1-4020-2590-4"},{"key":"5_CR8","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s00894-017-3435-4","volume":"23","author":"P Matczak","year":"2017","unstructured":"Matczak, P., Domaga\u0142a, M.: Heteroatom and solvent effects on molecular properties of formaldehyde and thioformaldehyde symmetrically disubstituted with heterocyclic groups c 4 h 3 y (where y= o-po). J. Mol. Model. 23, 1\u201311 (2017)","journal-title":"J. Mol. Model."},{"key":"5_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.chphi.2023.100346","volume":"7","author":"MO Odey","year":"2023","unstructured":"Odey, M.O., et al.: Unraveling the impact of polar solvation on the molecular geometry, spectroscopy (ft-ir, uv, nmr), reactivity (elf, nbo, homo-lumo) and antiviral inhibitory potential of cissampeline by molecular docking approach. Chem. Phys. Impact 7, 100346 (2023)","journal-title":"Chem. Phys. Impact"},{"issue":"13","key":"5_CR10","doi-asserted-by":"publisher","first-page":"3300","DOI":"10.1021\/jp003468x","volume":"105","author":"B Ensing","year":"2001","unstructured":"Ensing, B., Meijer, E.J., Bl\u00f6chl, P., Baerends, E.J.: Solvation effects on the SN2 reaction between CH3CL and CL-in water. J. Phys. Chem. A 105(13), 3300\u20133310 (2001)","journal-title":"J. Phys. Chem. A"},{"key":"5_CR11","doi-asserted-by":"crossref","unstructured":"Medrano Sandonas, L., et al.: Dataset for quantum-mechanical exploration of conformers and solvent effects in large drug-like molecules. Sci. Data 11, 742 (2024)","DOI":"10.1038\/s41597-024-03521-8"},{"issue":"10","key":"5_CR12","doi-asserted-by":"publisher","first-page":"6423","DOI":"10.1021\/acs.jctc.1c00592","volume":"17","author":"M Pauletti","year":"2021","unstructured":"Pauletti, M., Rybkin, V.V., Iannuzzi, M.: Subsystem density functional theory augmented by a delta learning approach to achieve kohn-sham accuracy. J. Chem. Theory Comput. 17(10), 6423\u20136431 (2021)","journal-title":"J. Chem. Theory Comput."},{"issue":"8","key":"5_CR13","doi-asserted-by":"publisher","first-page":"4846","DOI":"10.1021\/acs.jctc.2c00501","volume":"18","author":"M Ruth","year":"2022","unstructured":"Ruth, M., Gerbig, D., Schreiner, P.R.: Machine learning of coupled cluster (t)-energy corrections via delta ($$\\delta $$)-learning. J. Chem. Theory Comput. 18(8), 4846\u20134855 (2022)","journal-title":"J. Chem. Theory Comput."},{"issue":"18","key":"5_CR14","doi-asserted-by":"publisher","first-page":"10775","DOI":"10.1039\/D2CP00834C","volume":"24","author":"K Atz","year":"2022","unstructured":"Atz, K., Isert, C., B\u00f6cker, M.N., Jim\u00e9nez-Luna, J., Schneider, G.: $$\\delta $$-quantum machine-learning for medicinal chemistry. PCCP 24(18), 10775\u201310783 (2022)","journal-title":"PCCP"},{"issue":"5","key":"5_CR15","doi-asserted-by":"publisher","first-page":"2087","DOI":"10.1021\/acs.jctc.5b00099","volume":"11","author":"R Ramakrishnan","year":"2015","unstructured":"Ramakrishnan, R., Dral, P.O., Rupp, M., Von Lilienfeld, O.A.: Big data meets quantum chemistry approximations: the $$\\delta $$-machine learning approach. J. Chem. Theory Comput. 11(5), 2087\u20132096 (2015)","journal-title":"J. Chem. Theory Comput."},{"issue":"1","key":"5_CR16","doi-asserted-by":"publisher","first-page":"3584","DOI":"10.1038\/s41467-021-23724-6","volume":"12","author":"A Alibakhshi","year":"2021","unstructured":"Alibakhshi, A., Hartke, B.: Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model. Nat. Commun. 12(1), 3584 (2021)","journal-title":"Nat. Commun."},{"issue":"10","key":"5_CR17","doi-asserted-by":"publisher","first-page":"106","DOI":"10.1007\/s00214-023-03047-z","volume":"142","author":"F Meng","year":"2023","unstructured":"Meng, F., Zhang, H., Collins Ramirez, J.S., Ayers, P.W.: Something for nothing: improved solvation free energy prediction with $$\\delta $$-learning. Theor. Chem. Acc. 142(10), 106 (2023)","journal-title":"Theor. Chem. Acc."},{"issue":"1","key":"5_CR18","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1186\/s13321-021-00533-z","volume":"13","author":"H Lim","year":"2021","unstructured":"Lim, H., Jung, Y.: MLsolvA: solvation free energy prediction from pairwise atomistic interactions by machine learning. J. Cheminf. 13(1), 56 (2021)","journal-title":"J. Cheminf."},{"issue":"D1","key":"5_CR19","doi-asserted-by":"publisher","first-page":"D1100","DOI":"10.1093\/nar\/gkr777","volume":"40","author":"A Gaulton","year":"2012","unstructured":"Gaulton, A., et al.: Chembl: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40(D1), D1100\u2013D1107 (2012)","journal-title":"Nucleic Acids Res."},{"issue":"2","key":"5_CR20","doi-asserted-by":"publisher","first-page":"90","DOI":"10.1038\/nchem.1243","volume":"4","author":"GR Bickerton","year":"2012","unstructured":"Bickerton, G.R., Paolini, G.V., Besnard, J., Muresan, S., Hopkins, A.L.: Quantifying the chemical beauty of drugs. Nat. Chem. 4(2), 90\u201398 (2012)","journal-title":"Nat. Chem."},{"issue":"14","key":"5_CR21","doi-asserted-by":"publisher","first-page":"7169","DOI":"10.1039\/C9CP06869D","volume":"22","author":"P Pracht","year":"2020","unstructured":"Pracht, P., Bohle, F., Grimme, S.: Automated exploration of the low-energy chemical space with fast quantum chemical methods. PCCP 22(14), 7169\u20137192 (2020)","journal-title":"PCCP"},{"issue":"2","key":"5_CR22","doi-asserted-by":"publisher","first-page":"185","DOI":"10.1002\/(SICI)1097-461X(1996)58:2<185::AID-QUA7>3.0.CO;2-U","volume":"58","author":"G Seifert","year":"1996","unstructured":"Seifert, G., Porezag, D., Frauenheim, T.: Calculations of molecules, clusters, and solids with a simplified LCAO-DFT-LDA scheme. Int. J. Quantum Chem. 58(2), 185\u2013192 (1996)","journal-title":"Int. J. Quantum Chem."},{"issue":"11","key":"5_CR23","doi-asserted-by":"publisher","first-page":"7260","DOI":"10.1103\/PhysRevB.58.7260","volume":"58","author":"M Elstner","year":"1998","unstructured":"Elstner, M., et al.: Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 58(11), 7260 (1998)","journal-title":"Phys. Rev. B"},{"issue":"4","key":"5_CR24","doi-asserted-by":"publisher","first-page":"931","DOI":"10.1021\/ct100684s","volume":"7","author":"M Gaus","year":"2011","unstructured":"Gaus, M., Cui, Q., Elstner, M.: DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J. Chem. Theory Comput. 7(4), 931\u2013948 (2011)","journal-title":"J. Chem. Theory Comput."},{"issue":"23","key":"5_CR25","doi-asserted-by":"publisher","first-page":"236402","DOI":"10.1103\/PhysRevLett.108.236402","volume":"108","author":"A Tkatchenko","year":"2012","unstructured":"Tkatchenko, A., DiStasio, R.A., Jr., Car, R., Scheffler, M.: Accurate and efficient method for many-body van der waals interactions. Phys. Rev. Lett. 108(23), 236402 (2012)","journal-title":"Phys. Rev. Lett."},{"key":"5_CR26","doi-asserted-by":"crossref","unstructured":"Ambrosetti, A., Reilly, A.M., DiStasio, R.A., Tkatchenko, A.: Long-range correlation energy calculated from coupled atomic response functions. J. Chem. Phys. 140(18) (2014)","DOI":"10.1063\/1.4865104"},{"key":"5_CR27","doi-asserted-by":"crossref","unstructured":"St\u00f6hr, M., Michelitsch, G.S., Tully, J.C., Reuter, K., Maurer, R.J.: Communication: Charge-population based dispersion interactions for molecules and materials. J. Chem. Phys. 144(15) (2016)","DOI":"10.1063\/1.4947214"},{"issue":"2","key":"5_CR28","doi-asserted-by":"publisher","first-page":"399","DOI":"10.1021\/acs.jpclett.7b03234","volume":"9","author":"M Mortazavi","year":"2018","unstructured":"Mortazavi, M., Brandenburg, J.G., Maurer, R.J., Tkatchenko, A.: Structure and stability of molecular crystals with many-body dispersion-inclusive density functional tight binding. J. Phys. Chem. Lett. 9(2), 399\u2013405 (2018)","journal-title":"J. Phys. Chem. Lett."},{"issue":"22","key":"5_CR29","doi-asserted-by":"publisher","first-page":"9982","DOI":"10.1063\/1.472933","volume":"105","author":"JP Perdew","year":"1996","unstructured":"Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982\u20139985 (1996)","journal-title":"J. Chem. Phys."},{"issue":"13","key":"5_CR30","doi-asserted-by":"publisher","first-page":"6158","DOI":"10.1063\/1.478522","volume":"110","author":"C Adamo","year":"1999","unstructured":"Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: the pbe0 model. J. Chem. Phys. 110(13), 6158\u20136170 (1999)","journal-title":"J. Chem. Phys."},{"key":"5_CR31","doi-asserted-by":"crossref","unstructured":"Ringe, S., Oberhofer, H., Reuter, K.: Transferable ionic parameters for first-principles poisson-boltzmann solvation calculations: neutral solutes in aqueous monovalent salt solutions. J. Chem. Phys. 146(13) (2017)","DOI":"10.1063\/1.4978850"},{"key":"5_CR32","first-page":"11423","volume":"35","author":"I Batatia","year":"2022","unstructured":"Batatia, I., Kovacs, D.P., Simm, G., Ortner, C., Cs\u00e1nyi, G.: MACE: higher order equivariant message passing neural networks for fast and accurate force fields. Adv. Neural. Inf. Process. Syst. 35, 11423\u201311436 (2022)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"issue":"1","key":"5_CR33","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1038\/s41597-021-00812-2","volume":"8","author":"J Hoja","year":"2021","unstructured":"Hoja, J., et al.: Qm7-x, a comprehensive dataset of quantum-mechanical properties spanning the chemical space of small organic molecules. Sci. Data 8(1), 43 (2021)","journal-title":"Sci. Data"},{"key":"5_CR34","doi-asserted-by":"crossref","unstructured":"Medrano\u00a0Sandonas, L., Hoja, J., Ernst, B.G., V\u00e1zquez-Mayagoitia, \u00c1., DiStasio, R.A., Tkatchenko, A.: \u201cfreedom of design\u201d in chemical compound space: towards rational in silico design of molecules with targeted quantum-mechanical properties. Chem. Sci. 14(39), 10702\u201310717 (2023)","DOI":"10.1039\/D3SC03598K"},{"key":"5_CR35","doi-asserted-by":"crossref","unstructured":"G\u00f3ger, S., Medrano Sandonas, L., M\u00fcller, C., Tkatchenko, A.: Data-driven tailoring of molecular dipole polarizability and frontier orbital energies in chemical compound space. Phys. Chem. Chem. Phys. 25, 22211\u201322222 (2023)","DOI":"10.1039\/D3CP02256K"},{"key":"5_CR36","unstructured":"Kromann, J.C.: Calculate root-mean-square deviation (rmsd) of two molecules using rotation. Github, Dataset. https:\/\/githubcom\/charnley\/rmsd (2019)"},{"key":"5_CR37","doi-asserted-by":"crossref","unstructured":"Kabsch, W.: A solution for the best rotation to relate two sets of vectors. Acta Crystallogr. Section A: Crystal Phys. Diffr. Theor. Gen. Crystallogr. 32(5), 922\u2013923 (1976)","DOI":"10.1107\/S0567739476001873"},{"key":"5_CR38","doi-asserted-by":"crossref","unstructured":"Walker, M.W., Shao, L., Volz, R.A.: Estimating 3-D location parameters using dual number quaternions. CVGIP: image understanding 54(3), 358\u2013367 (1991)","DOI":"10.1016\/1049-9660(91)90036-O"},{"issue":"5","key":"5_CR39","doi-asserted-by":"publisher","first-page":"2641","DOI":"10.1021\/acs.jctc.0c01112","volume":"17","author":"L B\u00f6selt","year":"2021","unstructured":"B\u00f6selt, L., Th\u00fcrlemann, M., Riniker, S.: Machine learning in QM\/MM molecular dynamics simulations of condensed-phase systems. J. Chem. Theory Comput. 17(5), 2641\u20132658 (2021)","journal-title":"J. Chem. Theory Comput."},{"key":"5_CR40","doi-asserted-by":"crossref","unstructured":"Borgis, D., Luukkonen, S., Belloni, L., Jeanmairet, G.: Accurate prediction of hydration free energies and solvation structures using molecular density functional theory with a simple bridge functional. J. Chem. Phys. 155(2), 024117 (2021)","DOI":"10.1063\/5.0057506"}],"container-title":["Lecture Notes in Computer Science","AI in Drug Discovery"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72381-0_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T13:11:28Z","timestamp":1726751488000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72381-0_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9,20]]},"ISBN":["9783031723803","9783031723810"],"references-count":40,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72381-0_5","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,9,20]]},"assertion":[{"value":"20 September 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that\u00a0are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"AIDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on AI in Drug Discovery","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lugano","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Switzerland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aidd2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/e-nns.org\/wp-content\/uploads\/2024\/ICANN2024-AIDrugDis-CfP_final.pdf","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}