{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,3]],"date-time":"2024-10-03T04:12:20Z","timestamp":1727928740467},"publisher-location":"Cham","reference-count":24,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031723773","type":"print"},{"value":"9783031723780","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-72378-0_47","type":"book-chapter","created":{"date-parts":[[2024,10,2]],"date-time":"2024-10-02T11:02:53Z","timestamp":1727866973000},"page":"504-513","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Diff3Dformer: Leveraging Slice Sequence Diffusion for\u00a0Enhanced 3D CT Classification with\u00a0Transformer Networks"],"prefix":"10.1007","author":[{"given":"Zihao","family":"Jin","sequence":"first","affiliation":[]},{"given":"Yingying","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Jiahao","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Caiwen","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Simon","family":"Walsh","sequence":"additional","affiliation":[]},{"given":"Guang","family":"Yang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,3]]},"reference":[{"key":"47_CR1","unstructured":"Cho, W., et al.: Towards enhanced controllability of diffusion models. arXiv preprint arXiv:2302.14368 (2023)"},{"key":"47_CR2","unstructured":"Dhariwal, P., Nichol, A.: Diffusion models beat gans on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780\u20138794 (2021)"},{"key":"47_CR3","unstructured":"Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. CoRR abs\/2010.11929 (2020). https:\/\/arxiv.org\/abs\/2010.11929"},{"key":"47_CR4","doi-asserted-by":"publisher","DOI":"10.1016\/j.sbi.2024.102778","volume":"85","author":"Y Fang","year":"2024","unstructured":"Fang, Y., Xing, X., Wang, S., Walsh, S., Yang, G.: Post-covid highlights: challenges and solutions of artificial intelligence techniques for swift identification of covid-19. Curr. Opin. Struct. Biol. 85, 102778 (2024)","journal-title":"Curr. Opin. Struct. Biol."},{"issue":"1","key":"47_CR5","doi-asserted-by":"publisher","first-page":"4080","DOI":"10.1038\/s41467-020-17971-2","volume":"11","author":"SA Harmon","year":"2020","unstructured":"Harmon, S.A., et al.: Artificial intelligence for the detection of covid-19 pneumonia on chest CT using multinational datasets. Nat. Commun. 11(1), 4080 (2020)","journal-title":"Nat. Commun."},{"key":"47_CR6","doi-asserted-by":"publisher","unstructured":"Hartmann, K., Hortal, E.: Covid-19 diagnosis in 3D chest CT scans with attention-based models. In: Juarez, J.M., Marcos, M., Stiglic, G., Tucker, A. (eds.) AIME 2023. LNCS, vol. 13897, pp. 229\u2013238. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-34344-5_27","DOI":"10.1007\/978-3-031-34344-5_27"},{"key":"47_CR7","doi-asserted-by":"crossref","unstructured":"He, X., et al.: Benchmarking deep learning models and automated model design for covid-19 detection with chest CT scans. MedRxiv, 2020-06 (2020)","DOI":"10.1101\/2020.06.08.20125963"},{"key":"47_CR8","doi-asserted-by":"crossref","unstructured":"Hou, J., Xu, J., Feng, R., Zhang, Y., Shan, F., Shi, W.: CMC-cov19d: contrastive mixup classification for covid-19 diagnosis. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 454\u2013461 (2021)","DOI":"10.1109\/ICCVW54120.2021.00055"},{"key":"47_CR9","unstructured":"Hsu, C.C., Chen, G.L., Wu, M.H.: Visual transformer with statistical test for covid-19 classification. arXiv preprint arXiv:2107.05334 (2021)"},{"key":"47_CR10","unstructured":"Huang, J., Dong, Q., Gong, S., Zhu, X.: Unsupervised deep learning by neighbourhood discovery. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol.\u00a097, pp. 2849\u20132858. PMLR, 09\u201315 June 2019. https:\/\/proceedings.mlr.press\/v97\/huang19b.html"},{"key":"47_CR11","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"47_CR12","doi-asserted-by":"crossref","unstructured":"Li, A.C., Prabhudesai, M., Duggal, S., Brown, E., Pathak, D.: Your diffusion model is secretly a zero-shot classifier. arXiv preprint arXiv:2303.16203 (2023)","DOI":"10.1109\/ICCV51070.2023.00210"},{"key":"47_CR13","doi-asserted-by":"crossref","unstructured":"Mei, X., et\u00a0al.: Artificial intelligence\u2013enabled rapid diagnosis of patients with covid-19. Nat. Med. 26(8), 1224\u20131228 (2020)","DOI":"10.1038\/s41591-020-0931-3"},{"key":"47_CR14","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2022.102722","volume":"84","author":"Y Meng","year":"2023","unstructured":"Meng, Y., et al.: Bilateral adaptive graph convolutional network on CT based covid-19 diagnosis with uncertainty-aware consensus-assisted multiple instance learning. Med. Image Anal. 84, 102722 (2023)","journal-title":"Med. Image Anal."},{"key":"47_CR15","unstructured":"Miron, R., Moisii, C., Dinu, S., Breaban, M.: Covid detection in chest CTS: improving the baseline on cov19-CT-DB. arXiv preprint arXiv:2107.04808 (2021)"},{"key":"47_CR16","doi-asserted-by":"crossref","unstructured":"Preechakul, K., Chatthee, N., Wizadwongsa, S., Suwajanakorn, S.: Diffusion autoencoders: toward a meaningful and decodable representation. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 10619\u201310629 (2022)","DOI":"10.1109\/CVPR52688.2022.01036"},{"key":"47_CR17","doi-asserted-by":"crossref","unstructured":"Shamshad, F., et al.: Transformers in medical imaging: a survey. Med. Image Anal., 102802 (2023)","DOI":"10.1016\/j.media.2023.102802"},{"issue":"8","key":"47_CR18","doi-asserted-by":"publisher","first-page":"2615","DOI":"10.1109\/TMI.2020.2995965","volume":"39","author":"X Wang","year":"2020","unstructured":"Wang, X., et al.: A weakly-supervised framework for covid-19 classification and lesion localization from chest CT. IEEE Trans. Med. Imaging 39(8), 2615\u20132625 (2020)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"47_CR19","unstructured":"Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)"},{"issue":"6","key":"47_CR20","doi-asserted-by":"publisher","first-page":"1423","DOI":"10.1016\/j.cell.2020.04.045","volume":"181","author":"K Zhang","year":"2020","unstructured":"Zhang, K., et al.: Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of covid-19 pneumonia using computed tomography. Cell 181(6), 1423\u20131433 (2020)","journal-title":"Cell"},{"key":"47_CR21","doi-asserted-by":"crossref","unstructured":"Zhang, L., Wen, Y.: MIA-COV19D: a transformer-based framework for covid19 classification in chest CTS. In: Proceeding of the IEEE\/CVF International Conference on Computer Vision Workshops, pp. 513\u2013518 (2021)","DOI":"10.1109\/ICCVW54120.2021.00063"},{"key":"47_CR22","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1007\/978-3-031-16449-1_22","volume-title":"MICCAI 2022","author":"A Zhao","year":"2022","unstructured":"Zhao, A., et al.: Prognostic imaging biomarker discovery in survival analysis for idiopathic pulmonary fibrosis. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13437, pp. 223\u2013233. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-16449-1_22"},{"key":"47_CR23","unstructured":"Zheng, M., et al.: End-to-end object detection with adaptive clustering transformer. arXiv preprint arXiv:2011.09315 (2020)"},{"key":"47_CR24","doi-asserted-by":"crossref","unstructured":"Zhong, S.: Efficient online spherical K-means clustering. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, vol.\u00a05, pp. 3180\u20133185. IEEE (2005)","DOI":"10.1109\/IJCNN.2005.1556436"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72378-0_47","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,2]],"date-time":"2024-10-02T11:08:50Z","timestamp":1727867330000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72378-0_47"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031723773","9783031723780"],"references-count":24,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72378-0_47","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"3 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Marrakesh","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2024\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}