{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T20:13:11Z","timestamp":1727122391740},"publisher-location":"Cham","reference-count":28,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031723469"},{"type":"electronic","value":"9783031723476"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-72347-6_21","type":"book-chapter","created":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T13:02:55Z","timestamp":1726491775000},"page":"312-327","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["TF-CL: Time Series Forcasting Based on\u00a0Time-Frequency Domain Contrastive Learning"],"prefix":"10.1007","author":[{"given":"Wen","family":"Li","sequence":"first","affiliation":[]},{"given":"Yun","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Shouguo","family":"Du","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,17]]},"reference":[{"issue":"1","key":"21_CR1","first-page":"3","volume":"6","author":"RB Cleveland","year":"1990","unstructured":"Cleveland, R.B., Cleveland, W.S., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6(1), 3 (1990)","journal-title":"J. Off. Stat."},{"issue":"1","key":"21_CR2","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1049\/cit2.12085","volume":"8","author":"H Du","year":"2023","unstructured":"Du, H., Du, S., Li, W.: Probabilistic time series forecasting with deep non-linear state space models. CAAI Trans. Intell. Technol. 8(1), 3\u201313 (2023)","journal-title":"CAAI Trans. Intell. Technol."},{"key":"21_CR3","doi-asserted-by":"crossref","unstructured":"Du, H., Li, L., Huang, Z., Yu, X.: Object-goal visual navigation via effective exploration of relations among historical navigation states. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2563\u20132573 (2023)","DOI":"10.1109\/CVPR52729.2023.00252"},{"key":"21_CR4","unstructured":"Du, H., Yu, X., Zheng, L.: VTNet: visual transformer network for object goal navigation. In: ICLR 2021-9th International Conference on Learning Representations. International Conference on Learning Representations, ICLR (2021)"},{"key":"21_CR5","doi-asserted-by":"crossref","unstructured":"Eldele, E., et al.: Time-series representation learning via temporal and contextual contrasting. In: International Joint Conference on Artificial Intelligence (2021). https:\/\/api.semanticscholar.org\/CorpusID:235658361","DOI":"10.24963\/ijcai.2021\/324"},{"key":"21_CR6","doi-asserted-by":"crossref","unstructured":"Faloutsos, C., Flunkert, V., Gasthaus, J., Januschowski, T., Wang, Y.: Forecasting big time series: theory and practice. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3209\u20133210 (2019)","DOI":"10.1145\/3292500.3332289"},{"key":"21_CR7","unstructured":"Flandrin, P.: Time-frequency\/time-scale analysis (1998). https:\/\/api.semanticscholar.org\/CorpusID:60457766"},{"key":"21_CR8","unstructured":"Franceschi, J.Y., Dieuleveut, A., Jaggi, M.: Unsupervised scalable representation learning for multivariate time series. In: Neural Information Processing Systems (2019). https:\/\/api.semanticscholar.org\/CorpusID:59413908"},{"key":"21_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2021.107111","volume":"102","author":"R Gao","year":"2021","unstructured":"Gao, R., Du, L., Duru, O., Yuen, K.F.: Time series forecasting based on echo state network and empirical wavelet transformation. Appl. Soft Comput. 102, 107111 (2021)","journal-title":"Appl. Soft Comput."},{"issue":"1","key":"21_CR10","doi-asserted-by":"publisher","first-page":"1689","DOI":"10.1038\/s41598-024-52240-y","volume":"14","author":"J Hao","year":"2024","unstructured":"Hao, J., Liu, F.: Improving long-term multivariate time series forecasting with a seasonal-trend decomposition-based 2-dimensional temporal convolution dense network. Sci. Rep. 14(1), 1689 (2024)","journal-title":"Sci. Rep."},{"key":"21_CR11","doi-asserted-by":"crossref","unstructured":"He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9726\u20139735 (2019). https:\/\/api.semanticscholar.org\/CorpusID:207930212","DOI":"10.1109\/CVPR42600.2020.00975"},{"key":"21_CR12","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026\u20131034 (2015). https:\/\/api.semanticscholar.org\/CorpusID:13740328","DOI":"10.1109\/ICCV.2015.123"},{"key":"21_CR13","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2022.109723","volume":"130","author":"Y Lin","year":"2022","unstructured":"Lin, Y., Chen, K., Zhang, X., Tan, B., Lu, Q.: Forecasting crude oil futures prices using BiLSTM-attention-CNN model with wavelet transform. Appl. Soft Comput. 130, 109723 (2022)","journal-title":"Appl. Soft Comput."},{"key":"21_CR14","unstructured":"Mikolov, T., Chen, K., Corrado, G.S., Dean, J.: Efficient estimation of word representations in vector space. In: International Conference on Learning Representations (2013). https:\/\/api.semanticscholar.org\/CorpusID:5959482"},{"key":"21_CR15","unstructured":"Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y., Januschowski, T.: Deep state space models for time series forecasting. Adv. Neural Inf. Process. Syst. 31 (2018)"},{"issue":"3","key":"21_CR16","doi-asserted-by":"publisher","first-page":"1181","DOI":"10.1016\/j.ijforecast.2019.07.001","volume":"36","author":"D Salinas","year":"2020","unstructured":"Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181\u20131191 (2020)","journal-title":"Int. J. Forecast."},{"key":"21_CR17","doi-asserted-by":"crossref","unstructured":"Shumway, R., Stoffer, D.S.: Time series analysis and its applications (2000). https:\/\/api.semanticscholar.org\/CorpusID:117869442","DOI":"10.1007\/978-1-4757-3261-0"},{"key":"21_CR18","unstructured":"Tang, C.I., Perez-Pozuelo, I., Spathis, D., Mascolo, C.: Exploring contrastive learning in human activity recognition for healthcare. ArXiv abs\/2011.11542 (2020). https:\/\/api.semanticscholar.org\/CorpusID:227126857"},{"key":"21_CR19","unstructured":"Tonekaboni, S., Eytan, D., Goldenberg, A.: Unsupervised representation learning for time series with temporal neighborhood coding. ArXiv abs\/2106.00750 (2021). https:\/\/api.semanticscholar.org\/CorpusID:235293778"},{"key":"21_CR20","unstructured":"Trindade, A.: ElectricityLoadDiagrams20112014. UCI Machine Learning Repository (2015). https:\/\/doi.org\/10.24432\/C58C86"},{"key":"21_CR21","unstructured":"Vaswani, A., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)"},{"key":"21_CR22","unstructured":"Wen, L., Jiawei, C., Ruixue, L., Yuguo, H., Shouguo, D.: T-transformer model for predicting tensor time series. J. Comput. Eng. Appl. 59(11) (2023)"},{"key":"21_CR23","unstructured":"Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: Cost: contrastive learning of disentangled seasonal-trend representations for time series forecasting. arXiv preprint arXiv:2202.01575 (2022)"},{"key":"21_CR24","first-page":"22419","volume":"34","author":"H Wu","year":"2021","unstructured":"Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural. Inf. Process. Syst. 34, 22419\u201322430 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"21_CR25","doi-asserted-by":"crossref","unstructured":"Yue, Z., et al.: TS2Vec: towards universal representation of time series. In: AAAI Conference on Artificial Intelligence (2021). https:\/\/api.semanticscholar.org\/CorpusID:237497421","DOI":"10.1609\/aaai.v36i8.20881"},{"key":"21_CR26","unstructured":"Zhang, X., Zhao, Z., Tsiligkaridis, T., Zitnik, M.: Self-supervised contrastive pre-training for time series via time-frequency consistency. ArXiv abs\/2206.08496 (2022). https:\/\/api.semanticscholar.org\/CorpusID:249848167"},{"key":"21_CR27","unstructured":"Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: AAAI Conference on Artificial Intelligence (2020). https:\/\/api.semanticscholar.org\/CorpusID:229156802"},{"key":"21_CR28","unstructured":"Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., Jin, R.: Fedformer: frequency enhanced decomposed transformer for long-term series forecasting. In: International Conference on Machine Learning, pp. 27268\u201327286. PMLR (2022)"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72347-6_21","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T13:18:08Z","timestamp":1726492688000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72347-6_21"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031723469","9783031723476"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72347-6_21","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"17 September 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lugano","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Switzerland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"33","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}