{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T19:49:53Z","timestamp":1742932193432,"version":"3.40.3"},"publisher-location":"Cham","reference-count":28,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031723469"},{"type":"electronic","value":"9783031723476"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-72347-6_18","type":"book-chapter","created":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T13:02:55Z","timestamp":1726491775000},"page":"267-281","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Learning Seasonal-Trend Representations and\u00a0Conditional Heteroskedasticity for\u00a0Time Series Analysis"],"prefix":"10.1007","author":[{"given":"Wen","family":"Li","sequence":"first","affiliation":[]},{"given":"Wenjun","family":"Yu","sequence":"additional","affiliation":[]},{"given":"Heming","family":"Du","sequence":"additional","affiliation":[]},{"given":"Shouguo","family":"Du","sequence":"additional","affiliation":[]},{"given":"Jinhong","family":"You","sequence":"additional","affiliation":[]},{"given":"Yiming","family":"Tang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,17]]},"reference":[{"key":"18_CR1","unstructured":"Alexandrov, A., et\u00a0al.: GluonTS: probabilistic time series models in python. arXiv preprint arXiv:1906.05264 (2019)"},{"key":"18_CR2","volume-title":"Time Series Analysis: Forecasting and Control","author":"GE Box","year":"2015","unstructured":"Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, Hoboken (2015)"},{"key":"18_CR3","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-0320-4","volume-title":"Time Series: Theory and Methods","author":"PJ Brockwell","year":"1991","unstructured":"Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods. Springer, New York (1991). https:\/\/doi.org\/10.1007\/978-1-4419-0320-4"},{"issue":"1","key":"18_CR4","first-page":"3","volume":"6","author":"RB Cleveland","year":"1990","unstructured":"Cleveland, R.B., Cleveland, W.S., Terpenning, I.: STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6(1), 3 (1990)","journal-title":"J. Off. Stat."},{"issue":"1","key":"18_CR5","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1049\/cit2.12085","volume":"8","author":"H Du","year":"2023","unstructured":"Du, H., Du, S., Li, W.: Probabilistic time series forecasting with deep non-linear state space models. CAAI Trans. Intell. Technol. 8(1), 3\u201313 (2023)","journal-title":"CAAI Trans. Intell. Technol."},{"key":"18_CR6","doi-asserted-by":"crossref","unstructured":"Du, H., Li, L., Huang, Z., Yu, X.: Object-goal visual navigation via effective exploration of relations among historical navigation states. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2563\u20132573, June 2023","DOI":"10.1109\/CVPR52729.2023.00252"},{"key":"18_CR7","unstructured":"Du, H., Yu, X., Zheng, L.: VTNet: visual transformer network for object goal navigation. In: ICLR 2021-9th International Conference on Learning Representations. International Conference on Learning Representations, ICLR (2021)"},{"key":"18_CR8","doi-asserted-by":"crossref","unstructured":"Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica J. Econ. Soc. 50, 987\u20131007 (1982)","DOI":"10.2307\/1912773"},{"key":"18_CR9","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-69395-8","volume-title":"Nonlinear Time Series: Nonparametric and Parametric Methods","author":"J Fan","year":"2003","unstructured":"Fan, J., Yao, Q.: Nonlinear Time Series: Nonparametric and Parametric Methods, vol. 20. Springer, New York (2003). https:\/\/doi.org\/10.1007\/978-0-387-69395-8"},{"issue":"1","key":"18_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1002\/for.3980040103","volume":"4","author":"ES Gardner Jr","year":"1985","unstructured":"Gardner, E.S., Jr.: Exponential smoothing: the state of the art. J. Forecast. 4(1), 1\u201328 (1985)","journal-title":"J. Forecast."},{"issue":"2","key":"18_CR11","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1016\/0304-4149(90)90100-7","volume":"36","author":"P Hall","year":"1990","unstructured":"Hall, P., Hart, J.D.: Nonparametric regression with long-range dependence. Stoch. Process. Their Appl. 36(2), 339\u2013351 (1990)","journal-title":"Stoch. Process. Their Appl."},{"issue":"396","key":"18_CR12","doi-asserted-by":"publisher","first-page":"1080","DOI":"10.1080\/01621459.1986.10478377","volume":"81","author":"JD Hart","year":"1986","unstructured":"Hart, J.D., Wehrly, T.E.: Kernel regression estimation using repeated measurements data. J. Am. Stat. Assoc. 81(396), 1080\u20131088 (1986)","journal-title":"J. Am. Stat. Assoc."},{"key":"18_CR13","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-031-13584-2","volume-title":"Applied Time Series Analysis and Forecasting with Python","author":"C Huang","year":"2022","unstructured":"Huang, C., Petukhina, A.: Applied Time Series Analysis and Forecasting with Python. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-13584-2"},{"issue":"2","key":"18_CR14","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1111\/1467-9868.00071","volume":"59","author":"IM Johnstone","year":"1997","unstructured":"Johnstone, I.M., Silverman, B.W.: Wavelet threshold estimators for data with correlated noise. J. Royal Stat. Soc. B (Stat. Methodol.) 59(2), 319\u2013351 (1997)","journal-title":"J. Royal Stat. Soc. B (Stat. Methodol.)"},{"key":"18_CR15","unstructured":"Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)"},{"key":"18_CR16","unstructured":"Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y., Januschowski, T.: Deep state space models for time series forecasting. Adv. Neural Inf. Process. Syst. 31 (2018)"},{"issue":"5","key":"18_CR17","doi-asserted-by":"publisher","first-page":"2054","DOI":"10.1214\/aos\/1069362387","volume":"25","author":"PM Robinson","year":"1997","unstructured":"Robinson, P.M.: Large-sample inference for nonparametric regression with dependent errors. Ann. Stat. 25(5), 2054\u20132083 (1997)","journal-title":"Ann. Stat."},{"issue":"3","key":"18_CR18","doi-asserted-by":"publisher","first-page":"1181","DOI":"10.1016\/j.ijforecast.2019.07.001","volume":"36","author":"D Salinas","year":"2020","unstructured":"Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: DeepAR: probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36(3), 1181\u20131191 (2020)","journal-title":"Int. J. Forecast."},{"issue":"1","key":"18_CR19","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1214\/aos\/1033066196","volume":"24","author":"BW Silverman","year":"1996","unstructured":"Silverman, B.W.: Smoothed functional principal components analysis by choice of norm. Ann. Stat. 24(1), 1\u201324 (1996)","journal-title":"Ann. Stat."},{"issue":"1","key":"18_CR20","doi-asserted-by":"publisher","first-page":"37","DOI":"10.1080\/00031305.2017.1380080","volume":"72","author":"SJ Taylor","year":"2018","unstructured":"Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37\u201345 (2018)","journal-title":"Am. Stat."},{"key":"18_CR21","doi-asserted-by":"crossref","unstructured":"Tsay, R.S.: Analysis of Financial Time Series. Wiley, Hoboken (2005)","DOI":"10.1002\/0471746193"},{"key":"18_CR22","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"issue":"1","key":"18_CR23","doi-asserted-by":"publisher","first-page":"121","DOI":"10.1093\/biomet\/ast051","volume":"101","author":"M Vogt","year":"2014","unstructured":"Vogt, M., Linton, O.: Nonparametric estimation of a periodic sequence in the presence of a smooth trend. Biometrika 101(1), 121\u2013140 (2014)","journal-title":"Biometrika"},{"issue":"2","key":"18_CR24","doi-asserted-by":"publisher","first-page":"177","DOI":"10.1360\/SSM-2019-0226","volume":"52","author":"S Wang","year":"2022","unstructured":"Wang, S., You, J., Huang, T.: Modelling and applications for non-stationary time series in the presence of trend and period. SCIENTIA SINICA Mathematica 52(2), 177\u2013208 (2022)","journal-title":"SCIENTIA SINICA Mathematica"},{"key":"18_CR25","first-page":"38775","volume":"35","author":"Z Wang","year":"2022","unstructured":"Wang, Z., Xu, X., Zhang, W., Trajcevski, G., Zhong, T., Zhou, F.: Learning latent seasonal-trend representations for time series forecasting. Adv. Neural. Inf. Process. Syst. 35, 38775\u201338787 (2022)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"18_CR26","unstructured":"Woo, G., Liu, C., Sahoo, D., Kumar, A., Hoi, S.: Cost: contrastive learning of disentangled seasonal-trend representations for time series forecasting. In: International Conference on Learning Representations (2021)"},{"key":"18_CR27","first-page":"22419","volume":"34","author":"H Wu","year":"2021","unstructured":"Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. Adv. Neural. Inf. Process. Syst. 34, 22419\u201322430 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"18_CR28","unstructured":"Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., Jin, R.: FEDformer: frequency enhanced decomposed transformer for long-term series forecasting. In: International Conference on Machine Learning. PMLR, pp. 27268\u201327286 (2022)"}],"container-title":["Lecture Notes in Computer Science","Artificial Neural Networks and Machine Learning \u2013 ICANN 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72347-6_18","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T13:17:36Z","timestamp":1726492656000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72347-6_18"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031723469","9783031723476"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72347-6_18","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"17 September 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Artificial Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lugano","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Switzerland","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"33","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"icann2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}