{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T06:51:38Z","timestamp":1742971898542,"version":"3.40.3"},"publisher-location":"Cham","reference-count":27,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031721168"},{"type":"electronic","value":"9783031721175"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-72117-5_19","type":"book-chapter","created":{"date-parts":[[2024,10,2]],"date-time":"2024-10-02T12:02:53Z","timestamp":1727870573000},"page":"197-207","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Detecting Noisy Labels with\u00a0Repeated Cross-Validations"],"prefix":"10.1007","author":[{"given":"Jianan","family":"Chen","sequence":"first","affiliation":[]},{"given":"Vishwesh","family":"Ramanathan","sequence":"additional","affiliation":[]},{"given":"Tony","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Anne L.","family":"Martel","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,3]]},"reference":[{"key":"19_CR1","doi-asserted-by":"publisher","unstructured":"Andrearczyk, V. et al.: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET\/CT images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2021. LNCS, vol. 13209. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-030-98253-9_1","DOI":"10.1007\/978-3-030-98253-9_1"},{"issue":"6","key":"19_CR2","doi-asserted-by":"publisher","first-page":"756","DOI":"10.1038\/s41551-023-01049-7","volume":"7","author":"S Azizi","year":"2023","unstructured":"Azizi, S., et al.: Robust and data-efficient generalization of self-supervised machine learning for diagnostic imaging. Nature Biomed. Eng. 7(6), 756\u2013779 (2023)","journal-title":"Nature Biomed. Eng."},{"issue":"1","key":"19_CR3","doi-asserted-by":"publisher","first-page":"154","DOI":"10.1038\/s41591-021-01620-2","volume":"28","author":"W Bulten","year":"2022","unstructured":"Bulten, W., et al.: Artificial intelligence for diagnosis and gleason grading of prostate cancer: the panda challenge. Nat. Med. 28(1), 154\u2013163 (2022)","journal-title":"Nat. Med."},{"key":"19_CR4","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"752","DOI":"10.1007\/978-3-030-87240-3_72","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"J Chen","year":"2021","unstructured":"Chen, J., Cheung, H.M.C., Milot, L., Martel, A.L.: AMINN: autoencoder-based multiple instance neural network improves outcome prediction in multifocal liver metastases. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 752\u2013761. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87240-3_72"},{"key":"19_CR5","unstructured":"Chen, J., Martel, A.L.: Metastatic cancer outcome prediction with injective multiple instance pooling. arXiv preprint arXiv:2203.04964 (2022)"},{"issue":"3","key":"19_CR6","doi-asserted-by":"publisher","first-page":"850","DOI":"10.1038\/s41591-024-02857-3","volume":"30","author":"RJ Chen","year":"2024","unstructured":"Chen, R.J., et al.: Towards a general-purpose foundation model for computational pathology. Nat. Med. 30(3), 850\u2013862 (2024)","journal-title":"Nat. Med."},{"key":"19_CR7","doi-asserted-by":"crossref","unstructured":"David, H.A., Nagaraja, H.N.: Order statistics. John Wiley & Sons (2004)","DOI":"10.1002\/0471667196.ess6023"},{"key":"19_CR8","unstructured":"Dosovitskiy, A., et\u00a0al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)"},{"issue":"5","key":"19_CR9","doi-asserted-by":"publisher","first-page":"845","DOI":"10.1109\/TNNLS.2013.2292894","volume":"25","author":"B Fr\u00e9nay","year":"2013","unstructured":"Fr\u00e9nay, B., Verleysen, M.: Classification in the presence of label noise: a survey. IEEE Trans. Neural Netw. Learn. Syst. 25(5), 845\u2013869 (2013)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"19_CR10","unstructured":"Goldberger, J., Ben-Reuven, E.: Training deep neural-networks using a noise adaptation layer. In: International Conference on Learning Representations (2016)"},{"issue":"3","key":"19_CR11","doi-asserted-by":"publisher","first-page":"938","DOI":"10.1214\/aoms\/1177700066","volume":"36","author":"WL Harkness","year":"1965","unstructured":"Harkness, W.L.: Properties of the extended hypergeometric distribution. Ann. Math. Stat. 36(3), 938\u2013945 (1965)","journal-title":"Ann. Math. Stat."},{"issue":"6","key":"19_CR12","doi-asserted-by":"publisher","first-page":"1533","DOI":"10.1109\/TMI.2022.3141425","volume":"41","author":"L Ju","year":"2022","unstructured":"Ju, L., et al.: Improving medical images classification with label noise using dual-uncertainty estimation. IEEE Trans. Med. Imaging 41(6), 1533\u20131546 (2022)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"19_CR13","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101759","volume":"65","author":"D Karimi","year":"2020","unstructured":"Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy labels: exploring techniques and remedies in medical image analysis. Med. Image Anal. 65, 101759 (2020)","journal-title":"Med. Image Anal."},{"key":"19_CR14","unstructured":"Krizhevsky, A., Hinton, G., et\u00a0al.: Learning multiple layers of features from tiny images (2009)"},{"key":"19_CR15","unstructured":"Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. Adv. Neural Inform. Process. Syst. 7 (1994)"},{"key":"19_CR16","doi-asserted-by":"crossref","unstructured":"Matic, N., Guyon, I., Bottou, L., Denker, J., Vapnik, V.: Computer aided cleaning of large databases for character recognition. In: 11th IAPR International Conference on Pattern Recognition. Vol. II. Conference B: Pattern Recognition Methodology and Systems, vol.\u00a01, pp. 330\u2013331. IEEE Computer Society (1992)","DOI":"10.1109\/ICPR.1992.201784"},{"key":"19_CR17","doi-asserted-by":"crossref","unstructured":"Matuszewski, D.J., Sintorn, I.M.: Minimal annotation training for segmentation of microscopy images. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 387\u2013390. IEEE (2018)","DOI":"10.1109\/ISBI.2018.8363599"},{"key":"19_CR18","doi-asserted-by":"publisher","first-page":"1373","DOI":"10.1613\/jair.1.12125","volume":"70","author":"C Northcutt","year":"2021","unstructured":"Northcutt, C., Jiang, L., Chuang, I.: Confident learning: estimating uncertainty in dataset labels. J. Artifi. Intell. Res. 70, 1373\u20131411 (2021)","journal-title":"J. Artifi. Intell. Res."},{"key":"19_CR19","unstructured":"Oquab, M., et\u00a0al.: Dinov2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193 (2023)"},{"key":"19_CR20","unstructured":"Reinke, A., et\u00a0al.: Understanding metric-related pitfalls in image analysis validation. Nat. Methods, 1\u201313 (2024)"},{"key":"19_CR21","first-page":"2136","volume":"34","author":"Z Shao","year":"2021","unstructured":"Shao, Z., Bian, H., Chen, Y., Wang, Y., Zhang, J., Ji, X., et al.: Transmil: transformer based correlated multiple instance learning for whole slide image classification. Adv. Neural. Inf. Process. Syst. 34, 2136\u20132147 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"issue":"21","key":"19_CR22","doi-asserted-by":"publisher","first-page":"e104","DOI":"10.1158\/0008-5472.CAN-17-0339","volume":"77","author":"JJ Van Griethuysen","year":"2017","unstructured":"Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77(21), e104\u2013e107 (2017)","journal-title":"Can. Res."},{"key":"19_CR23","doi-asserted-by":"crossref","unstructured":"Wang, X., et al.: Transformer-based unsupervised contrastive learning for histopathological image classification. Med. Image Anal. (2022)","DOI":"10.1016\/j.media.2022.102559"},{"key":"19_CR24","unstructured":"Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., Liu, Y.: Learning with noisy labels revisited: A study using real-world human annotations. In: International Conference on Learning Representations (2022). https:\/\/openreview.net\/forum?id=TBWA6PLJZQm"},{"key":"19_CR25","doi-asserted-by":"publisher","unstructured":"Xiao, R., Dong, Y., Wang, H., Feng, L., Wu, R., Chen, G., Zhao, J.: Promix: Combating label noise via maximizing clean sample utility. In: Elkind, E. (ed.) Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp. 4442\u20134450. International Joint Conferences on Artificial Intelligence Organization (Oct 2023). https:\/\/doi.org\/10.24963\/ijcai.2023\/494, main Track","DOI":"10.24963\/ijcai.2023\/494"},{"key":"19_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-030-87193-2_1","volume-title":"Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2021","author":"Z Xu","year":"2021","unstructured":"Xu, Z., et al.: Noisy labels are treasure: mean-teacher-assisted confident learning for hepatic vessel segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 3\u201313. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-87193-2_1"},{"key":"19_CR27","unstructured":"Yue, C., Jha, N.K.: Ctrl: Clustering training losses for label error detection. arXiv preprint arXiv:2208.08464 (2022)"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72117-5_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,2]],"date-time":"2024-10-02T12:15:13Z","timestamp":1727871313000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72117-5_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031721168","9783031721175"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72117-5_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"3 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Marrakesh","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2024\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}