{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,4]],"date-time":"2024-10-04T04:26:38Z","timestamp":1728015998117},"publisher-location":"Cham","reference-count":28,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031720680","type":"print"},{"value":"9783031720697","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-72069-7_19","type":"book-chapter","created":{"date-parts":[[2024,10,3]],"date-time":"2024-10-03T19:02:59Z","timestamp":1727982179000},"page":"195-205","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Exploring Spatio-temporal Interpretable Dynamic Brain Function with\u00a0Transformer for\u00a0Brain Disorder Diagnosis"],"prefix":"10.1007","author":[{"given":"Lanting","family":"Li","sequence":"first","affiliation":[]},{"given":"Liuzeng","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Jinzhu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Fei","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Osmar R.","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,10,4]]},"reference":[{"key":"19_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2022.102471","volume":"79","author":"T Azevedo","year":"2022","unstructured":"Azevedo, T., Campbell, A., Romero-Garcia, R., Passamonti, L., Bethlehem, R.A., Lio, P., Toschi, N.: A deep graph neural network architecture for modelling spatio-temporal dynamics in resting-state functional mri data. Medical Image Analysis 79, 102471 (2022)","journal-title":"Medical Image Analysis"},{"key":"19_CR2","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2023.102841","volume":"88","author":"HA Bedel","year":"2023","unstructured":"Bedel, H.A., Sivgin, I., Dalmaz, O., Dar, S.U., \u00c7ukur, T.: Bolt: Fused window transformers for fmri time series analysis. Medical Image Analysis 88, 102841 (2023)","journal-title":"Medical Image Analysis"},{"issue":"6","key":"19_CR3","doi-asserted-by":"publisher","first-page":"277","DOI":"10.1016\/j.tics.2010.04.004","volume":"14","author":"SL Bressler","year":"2010","unstructured":"Bressler, S.L., Menon, V.: Large-scale brain networks in cognition: emerging methods and principles. Trends in cognitive sciences 14(6), 277\u2013290 (2010)","journal-title":"Trends in cognitive sciences"},{"issue":"7","key":"19_CR4","doi-asserted-by":"publisher","first-page":"1897","DOI":"10.1007\/s11517-022-02558-4","volume":"60","author":"P Cao","year":"2022","unstructured":"Cao, P., Wen, G., Liu, X., Yang, J., Zaiane, O.R.: Modeling the dynamic brain network representation for autism spectrum disorder diagnosis. Medical & Biological Engineering & Computing 60(7), 1897\u20131913 (2022)","journal-title":"Medical & Biological Engineering & Computing"},{"key":"19_CR5","unstructured":"Chen, D., O\u2019Bray, L., Borgwardt, K.: Structure-aware transformer for graph representation learning. In: International Conference on Machine Learning. pp. 3469\u20133489. PMLR (2022)"},{"key":"19_CR6","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1016\/j.jpsychires.2020.12.018","volume":"133","author":"N Chen","year":"2021","unstructured":"Chen, N., Shi, J., Li, Y., Ji, S., Zou, Y., Yang, L., Yao, Z., Hu, B.: Decreased dynamism of overlapping brain sub-networks in major depressive disorder. Journal of psychiatric research 133, 197\u2013204 (2021)","journal-title":"Journal of psychiatric research"},{"key":"19_CR7","doi-asserted-by":"crossref","unstructured":"Deng, X., Zhang, J., Liu, R., Liu, K.: Classifying asd based on time-series fmri using spatial\u2013temporal transformer. Computers in Biology and Medicine 151, 106320 (2022)","DOI":"10.1016\/j.compbiomed.2022.106320"},{"key":"19_CR8","doi-asserted-by":"crossref","unstructured":"Dvornek, N.C., Ventola, P., Pelphrey, K.A., Duncan, J.S.: Identifying autism from resting-state fmri using long short-term memory networks. In: Machine Learning in Medical Imaging: 8th International Workshop, MLMI 2017, Held in Conjunction with MICCAI 2017, Quebec City, QC, Canada, September 10, 2017, Proceedings 8. pp. 362\u2013370. Springer (2017)","DOI":"10.1007\/978-3-319-67389-9_42"},{"key":"19_CR9","doi-asserted-by":"crossref","unstructured":"El-Gazzar, A., Thomas, R.M., van Wingen, G.: Dynamic adaptive spatio-temporal graph convolution for fmri modelling. In: Machine Learning in Clinical Neuroimaging: 4th International Workshop, MLCN 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings 4. pp. 125\u2013134. Springer (2021)","DOI":"10.1007\/978-3-030-87586-2_13"},{"key":"19_CR10","doi-asserted-by":"publisher","first-page":"70","DOI":"10.3389\/fninf.2019.00070","volume":"13","author":"T Eslami","year":"2019","unstructured":"Eslami, T., Mirjalili, V., Fong, A., Laird, A.R., Saeed, F.: Asd-diagnet: a hybrid learning approach for detection of autism spectrum disorder using fmri data. Frontiers in neuroinformatics 13, \u00a070 (2019)","journal-title":"Frontiers in neuroinformatics"},{"key":"19_CR11","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2022.102707","volume":"84","author":"Y Fang","year":"2023","unstructured":"Fang, Y., Wang, M., Potter, G.G., Liu, M.: Unsupervised cross-domain functional mri adaptation for automated major depressive disorder identification. Medical image analysis 84, 102707 (2023)","journal-title":"Medical image analysis"},{"key":"19_CR12","doi-asserted-by":"publisher","first-page":"1038","DOI":"10.1016\/j.neuroimage.2016.09.046","volume":"146","author":"J Kawahara","year":"2017","unstructured":"Kawahara, J., Brown, C.J., Miller, S.P., Booth, B.G., Chau, V., Grunau, R.E., Zwicker, J.G., Hamarneh, G.: Brainnetcnn: Convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038\u20131049 (2017)","journal-title":"NeuroImage"},{"key":"19_CR13","first-page":"4314","volume":"34","author":"BH Kim","year":"2021","unstructured":"Kim, B.H., Ye, J.C., Kim, J.J.: Learning dynamic graph representation of brain connectome with spatio-temporal attention. Advances in Neural Information Processing Systems 34, 4314\u20134327 (2021)","journal-title":"Advances in Neural Information Processing Systems"},{"key":"19_CR14","doi-asserted-by":"crossref","unstructured":"Li, L., Jiang, H., Wen, G., Cao, P., Xu, M., Liu, X., Yang, J., Zaiane, O.: Te-hi-gcn: An ensemble of transfer hierarchical graph convolutional networks for disorder diagnosis. Neuroinformatics pp. 1\u201323 (2021)","DOI":"10.1007\/s12021-021-09548-1"},{"key":"19_CR15","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2021.102233","volume":"74","author":"X Li","year":"2021","unstructured":"Li, X., Zhou, Y., Dvornek, N., Zhang, M., Gao, S., Zhuang, J., Scheinost, D., Staib, L.H., Ventola, P., Duncan, J.S.: Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis 74, 102233 (2021)","journal-title":"Medical Image Analysis"},{"issue":"11","key":"19_CR16","doi-asserted-by":"publisher","first-page":"4392","DOI":"10.1073\/pnas.1216856110","volume":"110","author":"X Liu","year":"2013","unstructured":"Liu, X., Duyn, J.H.: Time-varying functional network information extracted from brief instances of spontaneous brain activity. Proceedings of the National Academy of Sciences 110(11), 4392\u20134397 (2013)","journal-title":"Proceedings of the National Academy of Sciences"},{"issue":"9","key":"19_CR17","doi-asserted-by":"publisher","first-page":"1296","DOI":"10.1038\/s41380-018-0267-2","volume":"24","author":"A Perry","year":"2019","unstructured":"Perry, A., Roberts, G., Mitchell, P.B., Breakspear, M.: Connectomics of bipolar disorder: a critical review, and evidence for dynamic instabilities within interoceptive networks. Molecular psychiatry 24(9), 1296\u20131318 (2019)","journal-title":"Molecular psychiatry"},{"key":"19_CR18","unstructured":"Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems 28 (2015)"},{"issue":"9","key":"19_CR19","doi-asserted-by":"publisher","first-page":"2790","DOI":"10.1002\/hbm.25404","volume":"42","author":"ET Rolls","year":"2021","unstructured":"Rolls, E.T., Cheng, W., Feng, J.: Brain dynamics: synchronous peaks, functional connectivity, and its temporal variability. Human brain mapping 42(9), 2790\u20132801 (2021)","journal-title":"Human brain mapping"},{"issue":"8","key":"19_CR20","doi-asserted-by":"publisher","first-page":"3131","DOI":"10.1073\/pnas.1121329109","volume":"109","author":"SM Smith","year":"2012","unstructured":"Smith, S.M., Miller, K.L., Moeller, S., Xu, J., Auerbach, E.J., Woolrich, M.W., Beckmann, C.F., Jenkinson, M., Andersson, J., Glasser, M.F., et\u00a0al.: Temporally-independent functional modes of spontaneous brain activity. Proceedings of the National Academy of Sciences 109(8), 3131\u20133136 (2012)","journal-title":"Proceedings of the National Academy of Sciences"},{"key":"19_CR21","doi-asserted-by":"publisher","first-page":"197","DOI":"10.1016\/j.jad.2023.01.116","volume":"327","author":"X Teng","year":"2023","unstructured":"Teng, X., Guo, C., Lei, X., Yang, F., Wu, Z., Yu, L., Ren, J., Zhang, C.: Comparison of brain network between schizophrenia and bipolar disorder: a multimodal mri analysis of comparative studies. Journal of Affective Disorders 327, 197\u2013206 (2023)","journal-title":"Journal of Affective Disorders"},{"key":"19_CR22","unstructured":"Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, \u0141., Polosukhin, I.: Attention is all you need. Advances in neural information processing systems 30 (2017)"},{"key":"19_CR23","doi-asserted-by":"crossref","unstructured":"Wang, X., Xu, Y.: An improved index for clustering validation based on silhouette index and calinski-harabasz index. In: IOP Conference Series: Materials Science and Engineering. vol.\u00a0569, p. 052024. IOP Publishing (2019)","DOI":"10.1088\/1757-899X\/569\/5\/052024"},{"key":"19_CR24","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2022.105239","volume":"142","author":"G Wen","year":"2022","unstructured":"Wen, G., Cao, P., Bao, H., Yang, W., Zheng, T., Zaiane, O.: Mvs-gcn: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Computers in Biology and Medicine 142, 105239 (2022)","journal-title":"Computers in Biology and Medicine"},{"key":"19_CR25","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2022.119618","volume":"263","author":"J Xiao","year":"2022","unstructured":"Xiao, J., Uddin, L.Q., Meng, Y., Li, L., Gao, L., Shan, X., Huang, X., Liao, W., Chen, H., Duan, X.: A spatio-temporal decomposition framework for dynamic functional connectivity in the human brain. NeuroImage 263, 119618 (2022)","journal-title":"NeuroImage"},{"key":"19_CR26","doi-asserted-by":"crossref","unstructured":"Xing, X., Li, Q., Wei, H., Zhang, M., Zhan, Y., Zhou, X.S., Xue, Z., Shi, F.: Dynamic spectral graph convolution networks with assistant task training for early mci diagnosis. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 639\u2013646. Springer (2019)","DOI":"10.1007\/978-3-030-32251-9_70"},{"key":"19_CR27","doi-asserted-by":"crossref","unstructured":"Yan, Y., Zhu, J., Duda, M., Solarz, E., Sripada, C., Koutra, D.: Groupinn: Grouping-based interpretable neural network for classification of limited, noisy brain data. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining. pp. 772\u2013782 (2019)","DOI":"10.1145\/3292500.3330921"},{"key":"19_CR28","doi-asserted-by":"crossref","unstructured":"Zhao, C., Zhan, L., Thompson, P.M., Huang, H.: Predicting spatio-temporal human brain response using fmri. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 336\u2013345. Springer (2022)","DOI":"10.1007\/978-3-031-16431-6_32"}],"container-title":["Lecture Notes in Computer Science","Medical Image Computing and Computer Assisted Intervention \u2013 MICCAI 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-72069-7_19","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,3]],"date-time":"2024-10-03T19:05:20Z","timestamp":1727982320000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-72069-7_19"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031720680","9783031720697"],"references-count":28,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-72069-7_19","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"4 October 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"MICCAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Medical Image Computing and Computer-Assisted Intervention","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Marrakesh","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Morocco","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"7 October 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"11 October 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"miccai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/conferences.miccai.org\/2024\/en\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}