{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T04:35:20Z","timestamp":1726806920437},"publisher-location":"Cham","reference-count":32,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031716706","type":"print"},{"value":"9783031716713","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-71671-3_12","type":"book-chapter","created":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T22:45:48Z","timestamp":1726785948000},"page":"155-173","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Reverse Engineering of\u00a0Renal Tubule Networks in\u00a0the\u00a0High-Dimensional Regime"],"prefix":"10.1007","author":[{"given":"Roberto","family":"Pagliarini","sequence":"first","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,19]]},"reference":[{"key":"12_CR1","doi-asserted-by":"publisher","unstructured":"B\u00fchlmann, P., van\u00a0de Geer, S.: Statistics for high-dimensional data methods, theory and applications. Springer Series in Statistics, Springer, Heidelberg (2011). https:\/\/doi.org\/10.1007\/978-3-642-20192-9","DOI":"10.1007\/978-3-642-20192-9"},{"key":"12_CR2","doi-asserted-by":"crossref","unstructured":"Carlson, M., Zhang, B., Fang, Z., Mischel, P.S., Horvath, S., Nelson, S.F.: Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics 7, 40\u201340 (2006). https:\/\/api.semanticscholar.org\/CorpusID:17089546","DOI":"10.1186\/1471-2164-7-40"},{"key":"12_CR3","doi-asserted-by":"crossref","unstructured":"Castellini, A., Franco, G., Pagliarini, R.: Data analysis pipeline from laboratory to MP models. Nat. Comput. 10(1), 55\u201376 (2011). http:\/\/dblp.uni-trier.de\/db\/journals\/nc\/nc10.html#CastelliniFP11","DOI":"10.1007\/s11047-010-9200-6"},{"key":"12_CR4","doi-asserted-by":"crossref","unstructured":"Chen, Y., Wiesel, A., III, A.O.H.: Shrinkage estimation of high dimensional covariance matrices. In: ICASSP, pp. 2937\u20132940. IEEE","DOI":"10.1109\/ICASSP.2009.4960239"},{"key":"12_CR5","doi-asserted-by":"publisher","unstructured":"Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: ICML \u201906: Proceedings of the 23rd International Conference on Machine Learning, pp. 233\u2013240. ACM, New York, NY, USA (2006). https:\/\/doi.org\/10.1145\/1143844.1143874, http:\/\/portal.acm.org\/citation.cfm?id=1143874","DOI":"10.1145\/1143844.1143874"},{"key":"12_CR6","doi-asserted-by":"crossref","unstructured":"Efron, B.: Correlation and large-scale simultaneous significance testing. J. Am. Stat. Assoc. 102, 103\u201393 (2007). https:\/\/api.semanticscholar.org\/CorpusID:805125","DOI":"10.1198\/016214506000001211"},{"issue":"D1","key":"12_CR7","doi-asserted-by":"publisher","first-page":"D649","DOI":"10.1093\/nar\/gkx1132","volume":"46","author":"A Fabregat","year":"2018","unstructured":"Fabregat, A., et al.: The reactome pathway knowledgebase. Nucleic Acids Res. 46(D1), D649\u2013D655 (2018). https:\/\/doi.org\/10.1093\/nar\/gkx1132","journal-title":"Nucleic Acids Res."},{"key":"12_CR8","doi-asserted-by":"crossref","unstructured":"Fu, W.J.: Penalized regressions: the bridge versus the lasso. J. Comput. Graph. Stat. 7, 397\u2013416 (1998). https:\/\/api.semanticscholar.org\/CorpusID:123095463","DOI":"10.1080\/10618600.1998.10474784"},{"key":"12_CR9","doi-asserted-by":"publisher","unstructured":"Ge, S.X., Jung, D., Yao, R.: ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36(8), 2628\u20132629 (2019). https:\/\/doi.org\/10.1093\/bioinformatics\/btz931, https:\/\/doi.org\/10.1093\/bioinformatics\/btz931","DOI":"10.1093\/bioinformatics\/btz931"},{"issue":"17","key":"12_CR10","doi-asserted-by":"publisher","first-page":"2713","DOI":"10.1093\/bioinformatics\/btw187","volume":"32","author":"IH Goenawan","year":"2016","unstructured":"Goenawan, I.H., Bryan, K., Lynn, D.J.: DyNet: visualization and analysis of dynamic molecular interaction networks. Bioinformatics 32(17), 2713\u20132715 (2016). https:\/\/doi.org\/10.1093\/bioinformatics\/btw187","journal-title":"Bioinformatics"},{"issue":"5","key":"12_CR11","doi-asserted-by":"publisher","first-page":"365","DOI":"10.1016\/S1359-6446(05)03369-6","volume":"10","author":"MG Grigorov","year":"2005","unstructured":"Grigorov, M.G.: Global properties of biological networks. Drug Discov. Today 10(5), 365\u2013372 (2005). https:\/\/doi.org\/10.1016\/S1359-6446(05)03369-6","journal-title":"Drug Discov. Today"},{"key":"12_CR12","doi-asserted-by":"crossref","unstructured":"Hocking, R.R.: A biometrics invited paper. the analysis and selection of variables in linear regression. Biometrics 32(1), 1\u201349 (1976). http:\/\/www.jstor.org\/stable\/2529336","DOI":"10.2307\/2529336"},{"key":"12_CR13","doi-asserted-by":"crossref","unstructured":"III, A.O.H., Rajaratnam, B.: Foundational principles for large-scale inference: illustrations through correlation mining. Proc. IEEE 104(1), 93\u2013110 (2016). http:\/\/dblp.uni-trier.de\/db\/journals\/pieee\/pieee104.html#HeroR16","DOI":"10.1109\/JPROC.2015.2494178"},{"issue":"D1","key":"12_CR14","doi-asserted-by":"publisher","first-page":"D457","DOI":"10.1093\/nar\/gkv1070","volume":"44","author":"M Kanehisa","year":"2016","unstructured":"Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M.: KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44(D1), D457-62 (2016). https:\/\/doi.org\/10.1093\/nar\/gkv1070","journal-title":"Nucleic Acids Res."},{"issue":"1","key":"12_CR15","doi-asserted-by":"publisher","first-page":"118","DOI":"10.1186\/s13059-019-1716-1","volume":"20","author":"K Korthauer","year":"2019","unstructured":"Korthauer, K., et al.: A practical guide to methods controlling false discoveries in computational biology. Genome Biol. 20(1), 118 (2019). https:\/\/doi.org\/10.1186\/s13059-019-1716-1","journal-title":"Genome Biol."},{"issue":"Suppl 1","key":"12_CR16","first-page":"13","volume":"14","author":"A Kyrgidis","year":"2010","unstructured":"Kyrgidis, A., Triaridis, S.: Methods and biostatistics: a concise guide for peer reviewers. Hippokratia 14(Suppl 1), 13\u201322 (2010)","journal-title":"Hippokratia"},{"key":"12_CR17","doi-asserted-by":"crossref","unstructured":"Lauritzen, S.L.: Graphical Models. Oxford University Press, Oxford (1996)","DOI":"10.1093\/oso\/9780198522195.001.0001"},{"issue":"6","key":"12_CR18","doi-asserted-by":"publisher","first-page":"1255","DOI":"10.1681\/ASN.2020010071","volume":"31","author":"K Limbutara","year":"2020","unstructured":"Limbutara, K., Chou, C.L., Knepper, M.A.: Quantitative proteomics of all 14 renal tubule segments in rat. J. Am. Soc. Nephrol. 31(6), 1255\u20131266 (2020). https:\/\/doi.org\/10.1681\/ASN.2020010071","journal-title":"J. Am. Soc. Nephrol."},{"key":"12_CR19","doi-asserted-by":"crossref","unstructured":"Madigan, D.: Graphical models in applied multivariate statistics, by j. whittaker, john wiley & sons, new york, 1990, 448 pp. Networks 24(2), 125 (1994). http:\/\/dblp.uni-trier.de\/db\/journals\/networks\/networks24.html#Madigan94","DOI":"10.1002\/net.3230240213"},{"key":"12_CR20","unstructured":"Mitchell, G., Robson, J.S., Vay, D.L.: Renal System. Encyclopedia Britannica (2023). https:\/\/www.britannica.com\/science\/human-renal-system"},{"key":"12_CR21","doi-asserted-by":"crossref","unstructured":"Penrose, R.: A generalized inverse for matrices. In: Proceedings of the Cambridge Philosophy Society. vol.\u00a051, pp. 406\u2013413 (1955)","DOI":"10.1017\/S0305004100030401"},{"key":"12_CR22","doi-asserted-by":"publisher","unstructured":"Pinna, A., Soranzo, N., Fuente, A., Hoeschele, I.: Simulation of the benchmark datasets. In: de la Fuente, A. (eds.) Gene Network Inference. Springer, Berlin, Heidelberg (2013). https:\/\/doi.org\/10.1007\/978-3-642-45161-4_1","DOI":"10.1007\/978-3-642-45161-4_1"},{"issue":"5586","key":"12_CR23","doi-asserted-by":"publisher","first-page":"1551","DOI":"10.1126\/science.1073374","volume":"297","author":"E Ravasz","year":"2002","unstructured":"Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., Barab\u00e1si, A.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551 (2002). https:\/\/doi.org\/10.1126\/science.1073374","journal-title":"Science"},{"key":"12_CR24","doi-asserted-by":"crossref","unstructured":"Saint-Antoine, M.M., Singh, A.: Evaluating pruning methods in gene network inference. In: Baruzzo, G., Daberdaku, S., Camillo, B.D., Furini, S., Giordano, E.D., Nicosia, G. (eds.) CIBCB. pp.\u00a01\u20137. IEEE (2019). http:\/\/dblp.uni-trier.de\/db\/conf\/cibcb\/cibcb2019.html#Saint-AntoineS19","DOI":"10.1109\/CIBCB.2019.8791237"},{"key":"12_CR25","doi-asserted-by":"crossref","unstructured":"Sch\u00e4fer, J., Strimmer, K.: An empirical bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6), 754\u2013764 (2005)","DOI":"10.1093\/bioinformatics\/bti062"},{"key":"12_CR26","doi-asserted-by":"publisher","unstructured":"Sch\u00e4fer, J., Strimmer, K.: A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Stat. Appl. Genet. Mol. Biol. 4(1), 32 (2005). https:\/\/doi.org\/10.2202\/1544-6115.1175, http:\/\/www.uni-leipzig.de\/~strimmer\/lab\/publications\/journals\/shrinkcov2005.pdf","DOI":"10.2202\/1544-6115.1175"},{"key":"12_CR27","doi-asserted-by":"crossref","unstructured":"Sulaimanov, N., Koeppl, H.: Graph reconstruction using covariance-based methods. EURASIP J. Bioinform. Syst. Biol. 2016(1), 19 (2016)","DOI":"10.1186\/s13637-016-0052-y"},{"key":"12_CR28","doi-asserted-by":"publisher","DOI":"10.1016\/j.lanepe.2022.100438","volume":"20","author":"J Sundstr\u00f6m","year":"2022","unstructured":"Sundstr\u00f6m, J., et al.: Prevalence, outcomes, and cost of chronic kidney disease in a contemporary population of 2$$\\cdot $$4 million patients from 11 countries: the CaReMe CKD study. Lancet Reg. Health Eur. 20, 100438 (2022). https:\/\/doi.org\/10.1016\/j.lanepe.2022.100438","journal-title":"Lancet Reg. Health Eur."},{"key":"12_CR29","doi-asserted-by":"crossref","unstructured":"Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B-Methodol. 58, 267\u2013288 (1996). https:\/\/api.semanticscholar.org\/CorpusID:16162039","DOI":"10.1111\/j.2517-6161.1996.tb02080.x"},{"key":"12_CR30","doi-asserted-by":"crossref","unstructured":"Xiang, J.X.: A note on the Cauchy-Schwarz inequality. Am. Math. Monthly 120(5), 456\u2013459 (2013)","DOI":"10.4169\/amer.math.monthly.120.05.456"},{"key":"12_CR31","doi-asserted-by":"crossref","unstructured":"Ye, Y., Godzik, A.: Comparative analysis of protein domain organization. Genome Res. 14(3), 343\u201353 (2004). https:\/\/api.semanticscholar.org\/CorpusID:399313","DOI":"10.1101\/gr.1610504"},{"key":"12_CR32","doi-asserted-by":"crossref","unstructured":"Yip, A.M., Horvath, S.: Gene network interconnectedness and the generalized topological overlap measure. BMC Bioinform. 8, 22\u201322 (2007). https:\/\/api.semanticscholar.org\/CorpusID:9460567","DOI":"10.1186\/1471-2105-8-22"}],"container-title":["Lecture Notes in Computer Science","Computational Methods in Systems Biology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-71671-3_12","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T22:46:59Z","timestamp":1726786019000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-71671-3_12"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031716706","9783031716713"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-71671-3_12","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"19 September 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CMSB","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Methods in Systems Biology","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Pisa","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Italy","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cmsb2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/cmsb.sciencesconf.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}