{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T00:46:14Z","timestamp":1724978774223},"publisher-location":"Cham","reference-count":17,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031708923","type":"print"},{"value":"9783031708930","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-70893-0_31","type":"book-chapter","created":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T11:02:54Z","timestamp":1724929374000},"page":"355-359","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Star-Shaped Denoising Diffusion Probabilistic Models (Extended Abstract)"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0009-4252-202X","authenticated-orcid":false,"given":"Andrey","family":"Okhotin","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4197-5029","authenticated-orcid":false,"given":"Dmitry","family":"Molchanov","sequence":"additional","affiliation":[]},{"given":"Vladimir","family":"Arkhipkin","sequence":"additional","affiliation":[]},{"given":"Grigory","family":"Bartosh","sequence":"additional","affiliation":[]},{"given":"Viktor","family":"Ohanesian","sequence":"additional","affiliation":[]},{"given":"Aibek","family":"Alanov","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6863-9028","authenticated-orcid":false,"given":"Dmitry","family":"Vetrov","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,8,30]]},"reference":[{"key":"31_CR1","unstructured":"Bansal, A., et al.: Cold diffusion: inverting arbitrary image transforms without noise. arXiv preprint arXiv:2208.09392 (2022)"},{"key":"31_CR2","unstructured":"Chen, R.T., Behrmann, J., Duvenaud, D.K., Jacobsen, J.H.: Residual flows for invertible generative modeling. In: Advances in Neural Information Processing Systems, vol. 32 (2019)"},{"key":"31_CR3","unstructured":"EOSDIS: land, atmosphere near real-time capability for eos (lance) system operated by nasas earth science data and information system (esdis) (2020). https:\/\/earthdata.nasa.gov\/earth-observation-data\/near-real-time\/firms\/active-fire-data"},{"key":"31_CR4","unstructured":"Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)"},{"key":"31_CR5","unstructured":"Grathwohl, W., Chen, R.T., Bettencourt, J., Sutskever, I., Duvenaud, D.: Ffjord: free-form continuous dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367 (2018)"},{"key":"31_CR6","unstructured":"Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"31_CR7","unstructured":"Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. arXiv preprint arXiv:2006.11239 (2020)"},{"key":"31_CR8","first-page":"12454","volume":"34","author":"E Hoogeboom","year":"2021","unstructured":"Hoogeboom, E., Nielsen, D., Jaini, P., Forr\u00e9, P., Welling, M.: Argmax flows and multinomial diffusion: learning categorical distributions. Adv. Neural. Inf. Process. Syst. 34, 12454\u201312465 (2021)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"31_CR9","unstructured":"Karras, T., et al.: Alias-free generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 34 (2021)"},{"key":"31_CR10","unstructured":"Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)"},{"key":"31_CR11","unstructured":"Mahoney, M.: Large text compression benchmark (2011). http:\/\/www.mattmahoney.net\/dc\/text.html"},{"key":"31_CR12","unstructured":"Nachmani, E., Roman, R.S., Wolf, L.: Denoising diffusion gamma models. arXiv preprint arXiv:2110.05948 (2021)"},{"key":"31_CR13","unstructured":"Nichol, A., Dhariwal, P.: Improved denoising diffusion probabilistic models. arXiv preprint arXiv:2102.09672 (2021)"},{"key":"31_CR14","unstructured":"Ramesh, A., et al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821\u20138831. PMLR (2021)"},{"key":"31_CR15","unstructured":"Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: International Conference on Machine Learning, pp. 1278\u20131286. PMLR (2014)"},{"key":"31_CR16","unstructured":"Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256\u20132265. PMLR (2015)"},{"key":"31_CR17","unstructured":"Xiao, Z., Kreis, K., Kautz, J., Vahdat, A.: Vaebm: a symbiosis between variational autoencoders and energy-based models. arXiv preprint arXiv:2010.00654 (2020)"}],"container-title":["Lecture Notes in Computer Science","KI 2024: Advances in Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-70893-0_31","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T11:08:46Z","timestamp":1724929726000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-70893-0_31"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031708923","9783031708930"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-70893-0_31","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"30 August 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"KI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"German Conference on Artificial Intelligence (K\u00fcnstliche Intelligenz)","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"W\u00fcrzburg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Germany","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"47","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ki2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.informatik.uni-wuerzburg.de\/ki24\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}