{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T00:31:09Z","timestamp":1726014669500},"publisher-location":"Cham","reference-count":34,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031704413","type":"print"},{"value":"9783031704420","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-70442-0_12","type":"book-chapter","created":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T08:09:40Z","timestamp":1725955780000},"page":"196-210","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["DocLightDetect: A New Algorithm for\u00a0Occlusion Classification in\u00a0Identification Documents"],"prefix":"10.1007","author":[{"given":"Ricardo Batista","family":"das Neves Junior","sequence":"first","affiliation":[]},{"given":"Byron Leite","family":"Dantas Bezerra","sequence":"additional","affiliation":[]},{"given":"Cleber","family":"Zanchettin","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,11]]},"reference":[{"key":"12_CR1","doi-asserted-by":"publisher","first-page":"262","DOI":"10.1016\/j.jnca.2017.10.011","volume":"103","author":"K Gai","year":"2018","unstructured":"Gai, K., Qiu, M., Sun, X.: A survey on FinTech. J. Netw. Comput. Appl. 103, 262\u2013273 (2018)","journal-title":"J. Netw. Comput. Appl."},{"key":"12_CR2","doi-asserted-by":"publisher","first-page":"171","DOI":"10.1093\/wbro\/lkab011","volume":"37","author":"D Rodriguez-Segura","year":"2022","unstructured":"Rodriguez-Segura, D.: EdTech in developing countries: a review of the evidence. The World Bank Res. Observer 37, 171\u2013203 (2022)","journal-title":"The World Bank Res. Observer"},{"key":"12_CR3","doi-asserted-by":"publisher","first-page":"105","DOI":"10.33369\/j.akuntansi.11.2.105-122","volume":"11","author":"A Nurazizah","year":"2021","unstructured":"Nurazizah, A., Novita, N.: Healthtech startups internal control to increase competitive advantage in the new normal era. Jurnal Akuntansi 11, 105\u2013122 (2021)","journal-title":"Jurnal Akuntansi"},{"key":"12_CR4","doi-asserted-by":"publisher","first-page":"185","DOI":"10.3390\/risks9100185","volume":"9","author":"M Ostrowska","year":"2021","unstructured":"Ostrowska, M.: Regulation of InsurTech: is the principle of proportionality an answer? Risks 9, 185 (2021)","journal-title":"Risks"},{"issue":"3","key":"12_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.giq.2022.101692","volume":"39","author":"N Bharosa","year":"2022","unstructured":"Bharosa, N.: The rise of GovTech: trojan horse or blessing in disguise? A research agenda. Gov. Inf. Q. 39(3), 101692 (2022)","journal-title":"Gov. Inf. Q."},{"key":"12_CR6","doi-asserted-by":"crossref","unstructured":"Neves, R., Ver\u00e7osa, L., Mac\u00eado, D., Bezerra, B., Zanchettin, C.: A fast fully octave convolutional neural network for document image segmentation. In: 2020 International Joint Conference On Neural Networks (IJCNN), pp. 1\u20136 (2020)","DOI":"10.1109\/IJCNN48605.2020.9206711"},{"key":"12_CR7","doi-asserted-by":"publisher","first-page":"3890","DOI":"10.1049\/iet-ipr.2020.0532","volume":"14","author":"R Neves","year":"2020","unstructured":"Neves, R., Lima, E., Bezerra, B., Zanchettin, C., Toselli, A.: HU-PageScan: a fully convolutional neural network for document page crop. IET Image Process. 14, 3890\u20133898 (2020)","journal-title":"IET Image Process."},{"key":"12_CR8","unstructured":"Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv Preprint arXiv:1412.6980 (2014)"},{"key":"12_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","volume-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","author":"O Ronneberger","year":"2015","unstructured":"Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234\u2013241. Springer, Cham (2015). https:\/\/doi.org\/10.1007\/978-3-319-24574-4_28"},{"key":"12_CR10","unstructured":"Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv Preprint arXiv:1409.1556 (2014)"},{"key":"12_CR11","doi-asserted-by":"crossref","unstructured":"das Neves Junior, R.B., Nascimento, S., Bezerra, B.L.D.: A robust approach to detect occlusions during camera-based document scanning. In: 9th IEEE Latin American Conference on Computational Intelligence (2023)","DOI":"10.1109\/LA-CCI58595.2023.10409375"},{"key":"12_CR12","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770\u2013778 (2016)","DOI":"10.1109\/CVPR.2016.90"},{"key":"12_CR13","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700\u20134708 (2017)","DOI":"10.1109\/CVPR.2017.243"},{"key":"12_CR14","unstructured":"Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105\u20136114 (2019)"},{"key":"12_CR15","doi-asserted-by":"publisher","first-page":"38","DOI":"10.1509\/jm.13.0300","volume":"78","author":"R Mullins","year":"2014","unstructured":"Mullins, R., Ahearne, M., Lam, S., Hall, Z., Boichuk, J.: Know your customer: how salesperson perceptions of customer relationship quality form and influence account profitability. J. Mark. 78, 38\u201358 (2014)","journal-title":"J. Mark."},{"key":"12_CR16","first-page":"1","volume":"13","author":"K Ota","year":"2017","unstructured":"Ota, K., Dao, M., Mezaris, V., Natale, F.: Deep learning for mobile multimedia: a survey. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 13, 1\u201322 (2017)","journal-title":"ACM Trans. Multimedia Comput. Commun. Appl. (TOMM)"},{"key":"12_CR17","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"198","DOI":"10.1007\/978-3-030-86198-8_15","volume-title":"Document Analysis and Recognition \u2013 ICDAR 2021 Workshops","author":"A Geovanna Soares","year":"2021","unstructured":"Geovanna Soares, A., Leite Dantas Bezerra, B., Baptista Lima, E.: How far deep learning systems for text detection and recognition in natural scenes are affected by occlusion? In: Barney Smith, E.H., Pal, U. (eds.) ICDAR 2021. LNCS, vol. 12916, pp. 198\u2013212. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86198-8_15"},{"key":"12_CR18","doi-asserted-by":"crossref","unstructured":"Zhou, X., et al.: EAST: an efficient and accurate scene text detector. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5551\u20135560 (2017)","DOI":"10.1109\/CVPR.2017.283"},{"key":"12_CR19","doi-asserted-by":"crossref","unstructured":"Wang, W., et al.: Shape robust text detection with progressive scale expansion network. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9336\u20139345 (2019)","DOI":"10.1109\/CVPR.2019.00956"},{"key":"12_CR20","doi-asserted-by":"crossref","unstructured":"Baek, Y., Lee, B., Han, D., Yun, S., Lee, H.: Character region awareness for text detection. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 9365\u20139374 (2019)","DOI":"10.1109\/CVPR.2019.00959"},{"key":"12_CR21","unstructured":"Liu, W., Chen, C., Wong, K., Su, Z., Han, J.: STAR-Net: a spatial attention residue network for scene text recognition. In: BMVC, vol. 2, p. 7 (2016)"},{"key":"12_CR22","doi-asserted-by":"publisher","first-page":"2298","DOI":"10.1109\/TPAMI.2016.2646371","volume":"39","author":"B Shi","year":"2016","unstructured":"Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2298\u20132304 (2016)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"12_CR23","doi-asserted-by":"crossref","unstructured":"Wang, W., et al.: Efficient and accurate arbitrary-shaped text detection with pixel aggregation network. In: Proceedings of the IEEE\/CVF International Conference on Computer Vision, pp. 8440\u20138449 (2019)","DOI":"10.1109\/ICCV.2019.00853"},{"key":"12_CR24","doi-asserted-by":"crossref","unstructured":"Shi, B., Wang, X., Lyu, P., Yao, C., Bai, X.: Robust scene text recognition with automatic rectification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4168\u20134176 (2016)","DOI":"10.1109\/CVPR.2016.452"},{"key":"12_CR25","doi-asserted-by":"crossref","unstructured":"Borisyuk, F., Gordo, A., Sivakumar, V.: Rosetta: large scale system for text detection and recognition in images. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 71\u201379 (2018)","DOI":"10.1145\/3219819.3219861"},{"key":"12_CR26","doi-asserted-by":"crossref","unstructured":"S\u00e1 Soares, A., Neves Junior, R., Bezerra, B.: BID dataset: a challenge dataset for document processing tasks. In: Anais Estendidos do XXXIII Conference on Graphics, Patterns and Images, pp. 143\u2013146 (2020)","DOI":"10.5753\/sibgrapi.est.2020.12997"},{"key":"12_CR27","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"678","DOI":"10.1007\/978-3-030-86337-1_45","volume-title":"Document Analysis and Recognition \u2013 ICDAR 2021","author":"CAM Lopes Junior","year":"2021","unstructured":"Lopes Junior, C.A.M., das Neves Junior, R.B., Bezerra, B.L.D., Toselli, A.H., Impedovo, D.: ICDAR 2021 competition on\u00a0components segmentation task of\u00a0document photos. In: Llad\u00f3s, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 678\u2013692. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86337-1_45"},{"key":"12_CR28","unstructured":"Lin, M., Chen, Q., Yan, S.: Network in network. arXiv Preprint arXiv:1312.4400 (2013)"},{"key":"12_CR29","unstructured":"Nair, V., Hinton, G.: Rectified linear units improve restricted boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 807\u2013814 (2010)"},{"key":"12_CR30","doi-asserted-by":"publisher","first-page":"2278","DOI":"10.1109\/5.726791","volume":"86","author":"Y LeCun","year":"1998","unstructured":"LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278\u20132324 (1998)","journal-title":"Proc. IEEE"},{"key":"12_CR31","volume-title":"Deep Learning","author":"I Goodfellow","year":"2016","unstructured":"Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)"},{"key":"12_CR32","doi-asserted-by":"crossref","unstructured":"Burie, J., et al.: ICDAR2015 competition on smartphone document capture and OCR (SmartDoc). In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1161\u20131165 (2015)","DOI":"10.1109\/ICDAR.2015.7333943"},{"key":"12_CR33","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961\u20132969 (2017)","DOI":"10.1109\/ICCV.2017.322"},{"key":"12_CR34","doi-asserted-by":"crossref","unstructured":"Malkauthekar, M.: Analysis of Euclidean distance and Manhattan distance measure in face recognition. In: Third International Conference on Computational Intelligence and Information Technology (CIIT 2013), pp. 503\u2013507 (2013)","DOI":"10.1049\/cp.2013.2636"}],"container-title":["Lecture Notes in Computer Science","Document Analysis Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-70442-0_12","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T08:14:44Z","timestamp":1725956084000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-70442-0_12"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031704413","9783031704420"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-70442-0_12","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"11 September 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"DAS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Document Analysis Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Athens","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 August 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 August 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"16","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"das2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/das2024.seecs.edu.pk\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}