{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,27]],"date-time":"2024-11-27T17:15:51Z","timestamp":1732727751249,"version":"3.29.0"},"publisher-location":"Cham","reference-count":32,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031703775"},{"type":"electronic","value":"9783031703782"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-70378-2_20","type":"book-chapter","created":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T09:02:05Z","timestamp":1725181325000},"page":"319-334","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["HPExplorer: XAI Method to\u00a0Explore the\u00a0Relationship Between Hyperparameters and\u00a0Model Performance"],"prefix":"10.1007","author":[{"given":"Yulia","family":"Grushetskaya","sequence":"first","affiliation":[]},{"given":"Mike","family":"Sips","sequence":"additional","affiliation":[]},{"given":"Reyko","family":"Schachtschneider","sequence":"additional","affiliation":[]},{"given":"Mohammadmehdi","family":"Saberioon","sequence":"additional","affiliation":[]},{"given":"Akram","family":"Mahan","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,8,22]]},"reference":[{"issue":"10","key":"20_CR1","first-page":"281","volume":"13","author":"J Bergstra","year":"2012","unstructured":"Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(10), 281\u2013305 (2012)","journal-title":"J. Mach. Learn. Res."},{"key":"20_CR2","unstructured":"Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1\u20132. Curran Associates, Inc., Red Hook (2012)"},{"key":"20_CR3","doi-asserted-by":"crossref","unstructured":"Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., Patton, R.M.: Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, pp. 1\u20135. ACM, New York (2015)","DOI":"10.1145\/2834892.2834896"},{"key":"20_CR4","doi-asserted-by":"crossref","unstructured":"Dhanorkar, S., Wolf, C.T., Qian, K., Xu, A., Popa, L., Li, Y.: Who needs to know what, when?: Broadening the Explainable AI (XAI) Design Space by Looking at Explanations Across the AI Lifecycle. In: Proceedings of the Conference, pp. 1591\u20131602. ACM, New York (2021)","DOI":"10.1145\/3461778.3462131"},{"key":"20_CR5","unstructured":"Moosbauer, J., Herbinger, J., Casalicchio, G., Lindauer, M., Bischl, B.: Towards Explaining Hyperparameter Optimization via Partial Dependence Plots. In: Proceedings of the international workshop on Automated Machine Learning (AutoML) at ICML\u201921, pp. 1\u20132. Publisher, Location (2021)"},{"issue":"2","key":"20_CR6","doi-asserted-by":"publisher","first-page":"1407","DOI":"10.1109\/TVCG.2020.3030380","volume":"27","author":"H Park","year":"2021","unstructured":"Park, H., Nam, Y., Kim, J., Choo, J.: HyperTendril: visual analytics for user-driven hyperparameter optimization of deep neural networks. IEEE Trans. Visual Comput. Graphics 27(2), 1407\u20131416 (2021)","journal-title":"IEEE Trans. Visual Comput. Graphics"},{"key":"20_CR7","unstructured":"Park, H., et al.: VisualHyperTuner: visual analytics for user-driven hyperparameter tuning of deep neural networks. In: Proceedings of the Conference, pp. 1\u20132. Publisher, Location (2019)"},{"issue":"3","key":"20_CR8","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1111\/cgf.14300","volume":"40","author":"A Chatzimparmpas","year":"2021","unstructured":"Chatzimparmpas, A., Martins, R.M., Kucher, K., Kerren, A.: VisEvol: visual analytics to support hyperparameter search through evolutionary optimization. Comput. Graph. Forum 40(3), 69\u201391 (2021)","journal-title":"Comput. Graph. Forum"},{"key":"20_CR9","doi-asserted-by":"crossref","unstructured":"Chakraborty, T., Wirth, C., Seifert, C.: Post-hoc rule based explanations for black box bayesian optimization. In: Editors (eds.) Book Title, pp. 320-337. Springer, Location (2024)","DOI":"10.1007\/978-3-031-50396-2_18"},{"issue":"4","key":"20_CR10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3625240","volume":"13","author":"M-A Z\u00f6ller","year":"2023","unstructured":"Z\u00f6ller, M.-A., Titov, W., Schlegel, T., Huber, M.F.: XAutoML: a visual analytics tool for understanding and validating automated machine learning. ACM Trans. Interactive Intell. Syst. 13(4), 1\u201339 (2023)","journal-title":"ACM Trans. Interactive Intell. Syst."},{"key":"20_CR11","doi-asserted-by":"crossref","unstructured":"Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using Star Coordinates. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 107\u2013116. ACM, New York (2001)","DOI":"10.1145\/502512.502530"},{"key":"20_CR12","doi-asserted-by":"crossref","unstructured":"Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, H.: DNA visual and analytic data mining. In: Proceedings of the Conference, pp. 437\u2013442. Publisher, Location (1997)","DOI":"10.1109\/VISUAL.1997.663916"},{"key":"20_CR13","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1007\/BF01898350","volume":"1","author":"A Inselberg","year":"1985","unstructured":"Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1, 69\u201391 (1985)","journal-title":"Vis. Comput."},{"key":"20_CR14","volume-title":"The Visual Display of Quantitative Information","author":"ER Tufte","year":"1986","unstructured":"Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, USA (1986)"},{"key":"20_CR15","doi-asserted-by":"crossref","unstructured":"Etemadpour, R., Linsen, L., Paiva, J.G., Crick, C., Forbes, A.: Choosing Visualization Techniques for Multidimensional Data Projection Tasks: A Guideline with Examples. In: Editors (eds.) Book Title, vol. 598, pp. 166\u2013186. Springer, Location (2016)","DOI":"10.1007\/978-3-319-29971-6_9"},{"issue":"122","key":"20_CR16","first-page":"10","volume":"75","author":"G Dzemyda","year":"2013","unstructured":"Dzemyda, G., Kurasova, O., Zilinskas, J.: Multidimensional data visualization. Methods and applications series: Springer optimization and its applications 75(122), 10\u20135555 (2013)","journal-title":"Methods and applications series: Springer optimization and its applications"},{"issue":"1","key":"20_CR17","doi-asserted-by":"publisher","first-page":"128","DOI":"10.1137\/0906011","volume":"6","author":"D Asimov","year":"1985","unstructured":"Asimov, D.: The grand tour: a tool for viewing multidimensional data. SIAM J. Sci. Stat. Comput. 6(1), 128\u2013143 (1985)","journal-title":"SIAM J. Sci. Stat. Comput."},{"key":"20_CR18","doi-asserted-by":"publisher","DOI":"10.1016\/j.mbs.2021.108593","volume":"337","author":"M Renardy","year":"2021","unstructured":"Renardy, M., Joslyn, L.R., Millar, J.A., Kirschner, D.E.: To sobol or not to sobol? the effects of sampling schemes in systems biology applications. Math. Biosci. 337, 108593 (2021)","journal-title":"Math. Biosci."},{"key":"20_CR19","unstructured":"Burhenne, S., Jacob, D., Henze, G.P.: Sampling based on Sobol\u2019 sequences for Monte Carlo techniques applied to building simulations. In: Proceedings of the Conference, pp. 1816\u20131823. Publisher, Location (2011)"},{"key":"20_CR20","unstructured":"HILDA \u201923: Proceedings of the Workshop on Human-In-the-Loop Data Analytics. ACM, New York, NY, USA (2023)"},{"key":"20_CR21","volume-title":"Parallel Coordinates: Visual Multidimensional Geometry and Its Applications","author":"A Inselberg","year":"2017","unstructured":"Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer, Heidelberg (2017)"},{"key":"20_CR22","doi-asserted-by":"crossref","unstructured":"Decker, T., Gross, R., Koebler, A., Lebacher, M., Schnitzer, R., Weber, S.H.: The thousand faces of explainable AI along the machine learning life cycle: industrial reality and current state of research. In: AI-HCI 2023: Artificial Intelligence in HCI, pp. 184-208. Springer, Heidelberg (2023)","DOI":"10.1007\/978-3-031-35891-3_13"},{"key":"20_CR23","doi-asserted-by":"crossref","unstructured":"Weidele, D.K.I., Weisz, J.D., Oduor, E., Muller, M., Andres, J., Gray, A., Wang, D.: AutoAIViz: opening the blackbox of automated artificial intelligence with conditional parallel coordinates. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 308\u2013312. ACM, New York (2020)","DOI":"10.1145\/3377325.3377538"},{"key":"20_CR24","unstructured":"Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: 31st International Conference on Machine Learning, ICML 2014, pp. 1130\u20131144 (2014)"},{"key":"20_CR25","doi-asserted-by":"crossref","unstructured":"Sheikholeslami, S., Meister, M., Wang, T., Payberah, A. H., Vlassov, V., Dowling, J.: AutoAblation: automated parallel ablation studies for deep learning. In: Proceedings of the 1st Workshop on Machine Learning and Systems, EuroMLSys \u201921, pp. 55-61. ACM, New York (2021)","DOI":"10.1145\/3437984.3458834"},{"key":"20_CR26","doi-asserted-by":"crossref","unstructured":"Bansal, N., Agarwal, C., Nguyen, A.: SAM: the sensitivity of attribution methods to hyperparameters. In: 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8670\u20138680. IEEE Computer Society, Los Alamitos (2020)","DOI":"10.1109\/CVPR42600.2020.00870"},{"key":"20_CR27","unstructured":"Mishra, S., Dutta, S., Long, J., Magazzeni, D.: A survey on the robustness of feature importance and counterfactual explanations. arXiv preprint arXiv:2111.00358 (2021)"},{"issue":"8","key":"20_CR28","doi-asserted-by":"publisher","first-page":"2674","DOI":"10.1109\/TVCG.2018.2843369","volume":"25","author":"F Hohman","year":"2019","unstructured":"Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers. IEEE Trans. Visual Comput. Graphics 25(8), 2674\u20132693 (2019)","journal-title":"IEEE Trans. Visual Comput. Graphics"},{"key":"20_CR29","unstructured":"Jaeger, H.: The \u201cecho state\u201d approach to analysing and training recurrent neural networks-with an erratum note. German National Research Center for Information Technology GMD, vol. 148, no. 34, pp. 13, Bonn, Germany (2001)"},{"issue":"11","key":"20_CR30","doi-asserted-by":"publisher","first-page":"2531","DOI":"10.1162\/089976602760407955","volume":"14","author":"W Maass","year":"2002","unstructured":"Maass, W., Natschl\u00e4ger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531\u20132560 (2002)","journal-title":"Neural Comput."},{"issue":"8","key":"20_CR31","doi-asserted-by":"publisher","first-page":"2373","DOI":"10.1175\/JCLI-D-21-0573.1","volume":"35","author":"A S\u00e1nchez-Ben\u00edtez","year":"2022","unstructured":"S\u00e1nchez-Ben\u00edtez, A., G\u00f6\u00dfling, H., Pithan, F., Semmler, T., Jung, T.: The July 2019 european heat wave in a warmer climate: storyline scenarios with a coupled model using spectral nudging. J. Clim. 35(8), 2373\u20132390 (2022)","journal-title":"J. Clim."},{"key":"20_CR32","volume-title":"Design and analysis of experiments","author":"DC Montgomery","year":"2017","unstructured":"Montgomery, D.C.: Design and analysis of experiments. John Wiley & Sons, Location (2017)"}],"container-title":["Lecture Notes in Computer Science","Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-70378-2_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,27]],"date-time":"2024-11-27T16:43:49Z","timestamp":1732725829000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-70378-2_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031703775","9783031703782"],"references-count":32,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-70378-2_20","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"22 August 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECML PKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vilnius","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lithuania","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecml2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2024.ecmlpkdd.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}