{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T00:13:21Z","timestamp":1725236001862},"publisher-location":"Cham","reference-count":39,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031703645","type":"print"},{"value":"9783031703652","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-70365-2_9","type":"book-chapter","created":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T04:01:55Z","timestamp":1725163315000},"page":"145-162","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Self-supervised Spatial-Temporal Normality Learning for\u00a0Time Series Anomaly Detection"],"prefix":"10.1007","author":[{"given":"Yutong","family":"Chen","sequence":"first","affiliation":[]},{"given":"Hongzuo","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Guansong","family":"Pang","sequence":"additional","affiliation":[]},{"given":"Hezhe","family":"Qiao","sequence":"additional","affiliation":[]},{"given":"Yuan","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Mingsheng","family":"Shang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,8,22]]},"reference":[{"key":"9_CR1","doi-asserted-by":"crossref","unstructured":"Abdulaal, A., Liu, Z., Lancewicki, T.: Practical approach to asynchronous multivariate time series anomaly detection and localization. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2485\u20132494 (2021)","DOI":"10.1145\/3447548.3467174"},{"key":"9_CR2","unstructured":"Anandakrishnan, A., Kumar, S., Statnikov, A., Faruquie, T., Di, X.: Anomaly detection in finance: editors\u2019 introduction. Knowledge Discovery and Data Mining (2017)"},{"key":"9_CR3","doi-asserted-by":"crossref","unstructured":"Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2020)","DOI":"10.1145\/3394486.3403392"},{"key":"9_CR4","doi-asserted-by":"crossref","unstructured":"Bingham, E., Mannila, H.: Random projection in dimensionality reduction: applications to image and text data. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 245\u2013250 (2001)","DOI":"10.1145\/502512.502546"},{"key":"9_CR5","doi-asserted-by":"crossref","unstructured":"Box, G.E.P., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 1509 (1970)","DOI":"10.2307\/2284333"},{"key":"9_CR6","doi-asserted-by":"crossref","unstructured":"Carmona, C.U., Aubet, F.X., Flunkert, V., Gasthaus, J.: Neural contextual anomaly detection for time series. arXiv preprint arXiv:2107.07702 (2021)","DOI":"10.24963\/ijcai.2022\/394"},{"key":"9_CR7","doi-asserted-by":"crossref","unstructured":"Chen, F., et al.: LARA: a light and anti-overfitting retraining approach for unsupervised time series anomaly detection. In: Proceedings of the ACM on Web Conference, pp. 4138\u20134149 (2024)","DOI":"10.1145\/3589334.3645472"},{"key":"9_CR8","doi-asserted-by":"publisher","first-page":"72","DOI":"10.1016\/j.neucom.2018.03.067","volume":"307","author":"M Christ","year":"2018","unstructured":"Christ, M., Braun, N., Neuffer, J., Kempa-Liehr, A.W.: Time series feature extraction on basis of scalable hypothesis tests (tsfresh-a python package). Neurocomputing 307, 72\u201377 (2018)","journal-title":"Neurocomputing"},{"key":"9_CR9","doi-asserted-by":"crossref","unstructured":"Sun, Y., Pang, G., Ye, G., Chen, T., Hu, X., Yin, H.: Unraveling the \u2018Anomaly\u2019 in time series anomaly detection: a self-supervised tri-domain solution. arXiv preprint arXiv:2311.11235 (2023)","DOI":"10.1109\/ICDE60146.2024.00080"},{"key":"9_CR10","unstructured":"Darban, Z.Z., Webb, G.I., Pan, S., Aggarwal, C.C., Salehi, M.: Deep learning for time series anomaly detection: a survey. arXiv preprint arXiv:2211.05244 (2022)"},{"issue":"5","key":"9_CR11","doi-asserted-by":"publisher","first-page":"1454","DOI":"10.1007\/s10618-020-00701-z","volume":"34","author":"A Dempster","year":"2020","unstructured":"Dempster, A., Petitjean, F., Webb, G.I.: Rocket: exceptionally fast and accurate time series classification using random convolutional kernels. Data Min. Knowl. Disc. 34(5), 1454\u20131495 (2020)","journal-title":"Data Min. Knowl. Disc."},{"key":"9_CR12","doi-asserted-by":"crossref","unstructured":"Deng, A., Hooi, B.: Graph neural network-based anomaly detection in multivariate time series. In: Proceedings of the AAAI conference on artificial intelligence, vol.\u00a035, pp. 4027\u20134035 (2021)","DOI":"10.1609\/aaai.v35i5.16523"},{"key":"9_CR13","doi-asserted-by":"crossref","unstructured":"Garg, A., Zhang, W., Samaran, J., Savitha, R., Foo, C.S.: An evaluation of anomaly detection and diagnosis in multivariate time series. IEEE Trans. Neural Networks Learn. Syst. 2508\u20132517 (2022)","DOI":"10.1109\/TNNLS.2021.3105827"},{"key":"9_CR14","doi-asserted-by":"crossref","unstructured":"G\u00fcnnemann, N., G\u00fcnnemann, S., Faloutsos, C.: Robust multivariate autoregression for anomaly detection in dynamic product ratings. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 361\u2013372 (2014)","DOI":"10.1145\/2566486.2568008"},{"key":"9_CR15","doi-asserted-by":"crossref","unstructured":"Hautamaki, V., Karkkainen, I., Franti, P.: Outlier detection using k-nearest neighbour graph. In: Proceedings of the 17th International Conference on Pattern Recognition, vol.\u00a03, pp. 430\u2013433. IEEE (2004)","DOI":"10.1109\/ICPR.2004.1334558"},{"key":"9_CR16","unstructured":"Hegde, C., Wakin, M., Baraniuk, R.: Random projections for manifold learning. In: Advances in Neural Information Processing Systems, vol. 20 (2007)"},{"key":"9_CR17","doi-asserted-by":"crossref","unstructured":"Huet, A., Navarro, J.M., Rossi, D.: Local evaluation of time series anomaly detection algorithms. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 635\u2013645 (2022)","DOI":"10.1145\/3534678.3539339"},{"key":"9_CR18","doi-asserted-by":"crossref","unstructured":"Hundman, K., Constantinou, V., Laporte, C., Colwell, I., Soderstrom, T.: Detecting spacecraft anomalies using LSTMs and nonparametric dynamic thresholding. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)","DOI":"10.1145\/3219819.3219845"},{"key":"9_CR19","doi-asserted-by":"crossref","unstructured":"Karczmarek, P., Kiersztyn, A., Pedrycz, W., Al, E.: K-means-based isolation forest. Knowl.-Based Syst 105659 (2020)","DOI":"10.1016\/j.knosys.2020.105659"},{"key":"9_CR20","doi-asserted-by":"crossref","unstructured":"Li, J., Di, S., Shen, Y., Chen, L.: FluxEV: a fast and effective unsupervised framework for time-series anomaly detection. In: Proceedings of the 14th ACM International Conference on Web Search and Data Mining (2021)","DOI":"10.1145\/3437963.3441823"},{"key":"9_CR21","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"133","DOI":"10.1007\/978-3-031-09342-5_13","volume-title":"AIME 2022","author":"X Li","year":"2022","unstructured":"Li, X., Metsis, V., Wang, H., Ngu, A.H.H.: TTS-GAN: a transformer-based time-series generative adversarial network. In: Michalowski, M., Abidi, S.S.R., Abidi, S. (eds.) AIME 2022. LNCS, vol. 13263, pp. 133\u2013143. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-09342-5_13"},{"key":"9_CR22","doi-asserted-by":"publisher","first-page":"4293","DOI":"10.1109\/TKDE.2021.3140058","volume":"35","author":"S Liu","year":"2023","unstructured":"Liu, S., et al.: Time series anomaly detection with adversarial reconstruction networks. IEEE Trans. Knowl. Data Eng. 35, 4293\u20134306 (2023)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"2","key":"9_CR23","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3439950","volume":"54","author":"G Pang","year":"2021","unstructured":"Pang, G., Shen, C., Cao, L., Hengel, A.V.D.: Deep learning for anomaly detection: a review. ACM Comput. Surv. (CSUR) 54(2), 1\u201338 (2021)","journal-title":"ACM Comput. Surv. (CSUR)"},{"issue":"11","key":"9_CR24","doi-asserted-by":"publisher","first-page":"2774","DOI":"10.14778\/3551793.3551830","volume":"15","author":"J Paparrizos","year":"2022","unstructured":"Paparrizos, J., Boniol, P., Palpanas, T., Tsay, R.S., Elmore, A., Franklin, M.J.: Volume under the surface: a new accuracy evaluation measure for time-series anomaly detection. Proc. VLDB Endowment 15(11), 2774\u20132787 (2022)","journal-title":"Proc. VLDB Endowment"},{"key":"9_CR25","doi-asserted-by":"crossref","unstructured":"Pereira, J., Silveira, M.: Learning representations from healthcare time series data for unsupervised anomaly detection. In: 2019 IEEE International Conference on Big Data and Smart Computing (BigComp), pp.\u00a01\u20137. IEEE (2019)","DOI":"10.1109\/BIGCOMP.2019.8679157"},{"key":"9_CR26","doi-asserted-by":"crossref","unstructured":"Ren, H., et al.: Time-series anomaly detection service at Microsoft. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019)","DOI":"10.1145\/3292500.3330680"},{"key":"9_CR27","unstructured":"Schneider, T., et al.: Detecting anomalies within time series using local neural transformations. arXiv preprint arXiv:2202.03944 (2022)"},{"key":"9_CR28","doi-asserted-by":"crossref","unstructured":"Tuli, S., Casale, G., Jennings, N.R.: TRANAD: deep transformer networks for anomaly detection in multivariate time series data. arXiv preprint arXiv:2201.07284 (2022)","DOI":"10.14778\/3514061.3514067"},{"key":"9_CR29","doi-asserted-by":"crossref","unstructured":"Wang, H., Pang, G., Shen, C., Ma, C.: Unsupervised representation learning by predicting random distances. arXiv preprint arXiv:1912.12186 (2019)","DOI":"10.24963\/ijcai.2020\/408"},{"issue":"9","key":"9_CR30","doi-asserted-by":"publisher","first-page":"4147","DOI":"10.1109\/TKDE.2020.3035685","volume":"34","author":"W Wu","year":"2020","unstructured":"Wu, W., et al.: Developing an unsupervised real-time anomaly detection scheme for time series with multi-seasonality. IEEE Trans. Knowl. Data Eng. 34(9), 4147\u20134160 (2020)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"9_CR31","doi-asserted-by":"crossref","unstructured":"Xu, H., et al.: Unsupervised anomaly detection via variational auto-encoder for seasonal KPIS in web applications. In: Proceedings of the Conference on World Wide Web (2018)","DOI":"10.1145\/3178876.3185996"},{"issue":"12","key":"9_CR32","doi-asserted-by":"publisher","first-page":"12591","DOI":"10.1109\/TKDE.2023.3270293","volume":"35","author":"H Xu","year":"2024","unstructured":"Xu, H., Pang, G., Wang, Y., Wang, Y.: Deep isolation forest for anomaly detection. IEEE Trans. Knowl. Data Eng. 35(12), 12591\u201312604 (2024)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"9_CR33","doi-asserted-by":"crossref","unstructured":"Xu, H., Wang, Y., Jian, S., Liao, Q., Wang, Y., Pang, G.: Calibrated one-class classification for unsupervised time series anomaly detection. IEEE Trans. Knowl. Data Eng. (2024)","DOI":"10.1109\/TKDE.2024.3393996"},{"key":"9_CR34","unstructured":"Xu, J., Wu, H., Wang, J., Long, M.: Anomaly transformer: time series anomaly detection with association discrepancy. In: International Conference on Learning Representations (2022)"},{"key":"9_CR35","doi-asserted-by":"crossref","unstructured":"Yang, Y., Zhang, C., Zhou, T., Wen, Q., Sun, L.: DCdetector: dual attention contrastive representation learning for time series anomaly detection. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 3033\u20133045 (2023)","DOI":"10.1145\/3580305.3599295"},{"key":"9_CR36","doi-asserted-by":"crossref","unstructured":"Yue, Z., et al.: Ts2vec: towards universal representation of time series. In: Proceedings of the AAAI Conference on Artificial Intelligence (2022)","DOI":"10.1609\/aaai.v36i8.20881"},{"key":"9_CR37","doi-asserted-by":"crossref","unstructured":"Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a033, pp. 1409\u20131416 (2019)","DOI":"10.1609\/aaai.v33i01.33011409"},{"key":"9_CR38","unstructured":"Zhang, K., et\u00a0al.: Self-supervised learning for time series analysis: taxonomy, progress, and prospects. arXiv preprint arXiv:2306.10125 (2023)"},{"key":"9_CR39","doi-asserted-by":"crossref","unstructured":"Zhou, B., Liu, S., Hooi, B., Cheng, X., Ye, J.: BeatGAN: anomalous rhythm detection using adversarially generated time series. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (2019)","DOI":"10.24963\/ijcai.2019\/616"}],"container-title":["Lecture Notes in Computer Science","Machine Learning and Knowledge Discovery in Databases. Research Track"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-70365-2_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T04:03:51Z","timestamp":1725163431000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-70365-2_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031703645","9783031703652"],"references-count":39,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-70365-2_9","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"22 August 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"ECML PKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vilnius","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lithuania","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecml2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2024.ecmlpkdd.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}