{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T00:12:33Z","timestamp":1725235953236},"publisher-location":"Cham","reference-count":31,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031703645","type":"print"},{"value":"9783031703652","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-70365-2_21","type":"book-chapter","created":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T04:01:55Z","timestamp":1725163315000},"page":"354-370","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["HiGraphDTI: Hierarchical Graph Representation Learning for\u00a0Drug-Target Interaction Prediction"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9052-8615","authenticated-orcid":false,"given":"Bin","family":"Liu","sequence":"first","affiliation":[]},{"given":"Siqi","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Jin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Deng","sequence":"additional","affiliation":[]},{"given":"Ao","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,8,22]]},"reference":[{"issue":"11","key":"21_CR1","doi-asserted-by":"publisher","first-page":"2100","DOI":"10.2174\/0929867327666200907141016","volume":"28","author":"K Abbasi","year":"2021","unstructured":"Abbasi, K., Razzaghi, P., Poso, A., Ghanbari-Ara, S., Masoudi-Nejad, A.: Deep learning in drug target interaction prediction: current and future perspectives. Curr. Med. Chem. 28(11), 2100\u20132113 (2021)","journal-title":"Curr. Med. Chem."},{"issue":"1","key":"21_CR2","first-page":"31","volume":"28","author":"E Anderson","year":"1987","unstructured":"Anderson, E., Veith, G.D., Weininger, D.: Smiles: a line notation and computerized interpreter for chemical structures. J. Chem. Inf. Comput. Sci. 28(1), 31\u201336 (1987)","journal-title":"J. Chem. Inf. Comput. Sci."},{"key":"21_CR3","doi-asserted-by":"crossref","unstructured":"Bagherian, M., Sabeti, E., Wang, K., Sartor, M.A., Nikolovska-Coleska, Z., Najar- ian, K.: Machine learning approaches and databases for prediction of drug-target interaction: a survey paper. Brief. Bioinf. 22(1), 247\u2013269 (2021)","DOI":"10.1093\/bib\/bbz157"},{"issue":"2","key":"21_CR4","doi-asserted-by":"publisher","first-page":"126","DOI":"10.1038\/s42256-022-00605-1","volume":"5","author":"P Bai","year":"2023","unstructured":"Bai, P., Miljkovi\u0107, F., John, B., Lu, H.: Interpretable bilinear attention network with domain adaptation improves drug-target prediction. Nat. Mach. Intell. 5(2), 126\u2013136 (2023)","journal-title":"Nat. Mach. Intell."},{"issue":"18","key":"21_CR5","doi-asserted-by":"publisher","first-page":"3035","DOI":"10.1093\/bioinformatics\/btv302","volume":"31","author":"WKB Chan","year":"2015","unstructured":"Chan, W.K.B., et al.: Glass: a comprehensive database for experimentally validated GPCR-ligand associations. Bioinformatics 31(18), 3035\u20133042 (2015)","journal-title":"Bioinformatics"},{"issue":"16","key":"21_CR6","doi-asserted-by":"publisher","first-page":"4406","DOI":"10.1093\/bioinformatics\/btaa524","volume":"36","author":"L Chen","year":"2020","unstructured":"Chen, L., et al.: Transformercpi: improving compound-protein interaction prediction by sequence-based deep learning with self-attention mechanism and la- bel reversal experiments. Bioinformatics 36(16), 4406\u20134414 (2020)","journal-title":"Bioinformatics"},{"issue":"4","key":"21_CR7","doi-asserted-by":"publisher","first-page":"2208","DOI":"10.1109\/TCBB.2021.3077905","volume":"19","author":"Z Cheng","year":"2022","unstructured":"Cheng, Z., Yan, C., Wu, F.X., Wang, J.: Drug-target interaction prediction using multi-head self-attention and graph attention network. IEEE\/ACM Trans. Comput. Biol. Bioinf. 19(4), 2208\u20132218 (2022)","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinf."},{"issue":"17","key":"21_CR8","doi-asserted-by":"publisher","first-page":"4153","DOI":"10.1093\/bioinformatics\/btac485","volume":"38","author":"Z Cheng","year":"2022","unstructured":"Cheng, Z., Zhao, Q., Li, Y., Wang, J.: IIFDTI: predicting drug-target interactions through interactive and independent features based on attention mechanism. Bioinformatics 38(17), 4153\u20134161 (2022)","journal-title":"Bioinformatics"},{"key":"21_CR9","doi-asserted-by":"crossref","unstructured":"Dai, Y., Gieseke, F., Oehmcke, S., Wu, Y., Barnard, K.: Attentional feature fusion. In: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, pp. 3560-3569 (2021)","DOI":"10.1109\/WACV48630.2021.00360"},{"key":"21_CR10","doi-asserted-by":"crossref","unstructured":"Degen, J., Wegscheid-Gerlach, C., Zaliani, A., Rarey, M.: On the art of compiling and using \u201cdrug-like\u201d chemical fragment spaces. ChemMedChem 3(10), 1503 (2008)","DOI":"10.1002\/cmdc.200800178"},{"key":"21_CR11","doi-asserted-by":"crossref","unstructured":"Gao, K.Y., Fokoue, A., Luo, H., Iyengar, A., Dey, S., Zhang, P.: Interpretable drug target prediction using deep neural representation. In: Proceedings of the Twenty- Seventh International Joint Conference on Artificial Intelligence, pp. 3371\u20133377 (2018)","DOI":"10.24963\/ijcai.2018\/468"},{"issue":"1","key":"21_CR12","doi-asserted-by":"publisher","first-page":"285","DOI":"10.1109\/TCBB.2022.3144008","volume":"20","author":"Y Hua","year":"2022","unstructured":"Hua, Y., Song, X.N., Feng, Z., Wu, X.J., Kittler, J., Yu, D.J.: Cpinformer for efficient and robust compound-protein interaction prediction. IEEE\/ACM Trans. Comput. Biol. Bioinf. 20(1), 285\u2013296 (2022)","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinf."},{"issue":"6","key":"21_CR13","doi-asserted-by":"publisher","first-page":"830","DOI":"10.1093\/bioinformatics\/btaa880","volume":"37","author":"K Huang","year":"2021","unstructured":"Huang, K., Xiao, C., Glass, L.M., Sun, J.: Moltrans: molecular interaction transformer for drug target interaction prediction. Bioinformatics 37(6), 830\u2013836 (2021)","journal-title":"Bioinformatics"},{"issue":"19","key":"21_CR14","doi-asserted-by":"publisher","first-page":"2149","DOI":"10.1093\/bioinformatics\/btn409","volume":"24","author":"L Jacob","year":"2008","unstructured":"Jacob, L., Vert, J.P.: Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics 24(19), 2149\u20132156 (2008)","journal-title":"Bioinformatics"},{"issue":"6","key":"21_CR15","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pcbi.1007129","volume":"15","author":"I Lee","year":"2019","unstructured":"Lee, I., Keum, J., Nam, H.: Deepconv-dti: prediction of drug-target interactions via deep learning with convolution on protein sequences. PLoS Comput. Biol. 15(6), e1007129 (2019)","journal-title":"PLoS Comput. Biol."},{"issue":"14","key":"21_CR16","doi-asserted-by":"publisher","first-page":"3582","DOI":"10.1093\/bioinformatics\/btac377","volume":"38","author":"F Li","year":"2022","unstructured":"Li, F., Zhang, Z., Guan, J., Zhou, S.: Effective drug-target interaction prediction with mutual interaction neural network. Bioinformatics 38(14), 3582\u20133589 (2022)","journal-title":"Bioinformatics"},{"issue":"5","key":"21_CR17","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1093\/bib\/bbac353","volume":"23","author":"B Liu","year":"2022","unstructured":"Liu, B., Papadopoulos, D., Malliaros, F., Tsoumakas, G., Papadopoulos, A.: Multiple similarity drug-target interaction prediction with random walks and matrix factorization. Brief. Bioinform. 23(5), 1\u20139 (2022)","journal-title":"Brief. Bioinform."},{"issue":"4","key":"21_CR18","doi-asserted-by":"publisher","first-page":"3705","DOI":"10.1007\/s10489-021-02495-z","volume":"52","author":"B Liu","year":"2022","unstructured":"Liu, B., Pliakos, K., Vens, C., Tsoumakas, G.: Drug-target interaction prediction via an ensemble of weighted nearest neighbors with interaction recovery. Appl. Intell. 52(4), 3705\u20133727 (2022)","journal-title":"Appl. Intell."},{"issue":"12","key":"21_CR19","doi-asserted-by":"publisher","first-page":"i221","DOI":"10.1093\/bioinformatics\/btv256","volume":"31","author":"H Liu","year":"2015","unstructured":"Liu, H., Sun, J., Guan, J., Zheng, J., Zhou, S.: Improving compound-protein interaction prediction by building up highly credible negative samples. Bioinformatics 31(12), i221\u2013i229 (2015)","journal-title":"Bioinformatics"},{"issue":"8","key":"21_CR20","doi-asserted-by":"publisher","first-page":"1140","DOI":"10.1093\/bioinformatics\/btaa921","volume":"37","author":"T Nguyen","year":"2020","unstructured":"Nguyen, T., Le, H., Quinn, T.P., Nguyen, T., Le, T.D., Venkatesh, S.: GraphDTA: predicting drug-target binding affinity with graph neural networks. Bioinformatics 37(8), 1140\u20131147 (2020)","journal-title":"Bioinformatics"},{"issue":"49","key":"21_CR21","first-page":"1","volume":"21","author":"K Pliakos","year":"2020","unstructured":"Pliakos, K., Vens, C.: Drug-target interaction prediction with tree-ensemble learning and output space reconstruction. BMC Bioinf. 21(49), 1\u201311 (2020)","journal-title":"BMC Bioinf."},{"key":"21_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.jbi.2019.103159","volume":"93","author":"K Sachdev","year":"2019","unstructured":"Sachdev, K., Gupta, M.K.: A comprehensive review of feature based methods for drug target interaction prediction. J. Biomed. Inf. 93, 103159 (2019)","journal-title":"J. Biomed. Inf."},{"issue":"3","key":"21_CR23","doi-asserted-by":"publisher","first-page":"919","DOI":"10.1093\/bib\/bbz042","volume":"21","author":"M Sun","year":"2020","unstructured":"Sun, M., Zhao, S., Gilvary, C., Elemento, O., Zhou, J., Wang, F.: Graph convolutional networks for computational drug development and discovery. Brief. Bioinf. 21(3), 919\u2013935 (2020)","journal-title":"Brief. Bioinf."},{"issue":"2","key":"21_CR24","doi-asserted-by":"publisher","first-page":"309","DOI":"10.1093\/bioinformatics\/bty535","volume":"35","author":"M Tsubaki","year":"2019","unstructured":"Tsubaki, M., Tomii, K., Sese, J.: Compound-protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 35(2), 309\u2013318 (2019)","journal-title":"Bioinformatics"},{"key":"21_CR25","unstructured":"Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? CoRR arxiv:1810.00826 (2018)"},{"key":"21_CR26","unstructured":"Zhang, Z., Liu, Q., Wang, H., Lu, C., Lee, C.K.: Motif-based graph self-supervised learning for molecular property prediction. Adv. Neural Inf. Process. Syst. 15870\u201315882 (2021)"},{"issue":"3","key":"21_CR27","doi-asserted-by":"publisher","first-page":"1943","DOI":"10.1109\/TCBB.2022.3225423","volume":"20","author":"Q Zhao","year":"2023","unstructured":"Zhao, Q., Duan, G., Zhao, H., Zheng, K., Li, Y., Wang, J.: Gifdti: prediction of drug-target interactions based on global molecular and intermolecular interaction representation learning. IEEE\/ACM Trans. Comput. Biol. Bioinf. 20(3), 1943\u20131952 (2023)","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinf."},{"issue":"4","key":"21_CR28","doi-asserted-by":"publisher","first-page":"2092","DOI":"10.1109\/TCBB.2021.3069040","volume":"19","author":"Q Zhao","year":"2022","unstructured":"Zhao, Q., Yang, M., Cheng, Z., Li, Y., Wang, J.: Biomedical data and deep learning computational models for predicting compound-protein relations. IEEE\/ACM Trans. Comput. Biol. Bioinf. 19(4), 2092\u20132110 (2022)","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinf."},{"issue":"3","key":"21_CR29","doi-asserted-by":"publisher","first-page":"655","DOI":"10.1093\/bioinformatics\/btab715","volume":"38","author":"Q Zhao","year":"2021","unstructured":"Zhao, Q., Zhao, H., Zheng, K., Wang, J.: HyperAttentionDTI: improving drug-protein interaction prediction by sequence-based deep learning with attention mechanism. Bioinformatics 38(3), 655\u2013662 (2021)","journal-title":"Bioinformatics"},{"key":"21_CR30","doi-asserted-by":"publisher","first-page":"71","DOI":"10.1016\/j.inffus.2018.09.012","volume":"50","author":"M Zitnik","year":"2019","unstructured":"Zitnik, M., Nguyen, F., Wang, B., Leskovec, J., Goldenberg, A., Hoffman, M.M.: Machine learning for integrating data in biology and medicine: principles, practice, and opportunities. Inf. Fusion 50, 71\u201391 (2019)","journal-title":"Inf. Fusion"},{"issue":"17","key":"21_CR31","doi-asserted-by":"publisher","first-page":"i821","DOI":"10.1093\/bioinformatics\/bty593","volume":"34","author":"H \u00d6zt\u00fcrk","year":"2018","unstructured":"\u00d6zt\u00fcrk, H., \u00d6zg\u00fcr, A., Ozkirimli, E.: DeepDTA: deep drug-target binding affinity prediction. Bioinformatics 34(17), i821\u2013i829 (2018)","journal-title":"Bioinformatics"}],"container-title":["Lecture Notes in Computer Science","Machine Learning and Knowledge Discovery in Databases. Research Track"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-70365-2_21","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T04:06:16Z","timestamp":1725163576000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-70365-2_21"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031703645","9783031703652"],"references-count":31,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-70365-2_21","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"22 August 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ECML PKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vilnius","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lithuania","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecml2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2024.ecmlpkdd.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}