{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T00:45:15Z","timestamp":1724978715984},"publisher-location":"Cham","reference-count":48,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031703430","type":"print"},{"value":"9783031703447","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-70344-7_3","type":"book-chapter","created":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T08:02:43Z","timestamp":1724918563000},"page":"35-52","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Frequency Enhanced Pre-training for\u00a0Cross-City Few-shot Traffic Forecasting"],"prefix":"10.1007","author":[{"given":"Zhanyu","family":"Liu","sequence":"first","affiliation":[]},{"given":"Jianrong","family":"Ding","sequence":"additional","affiliation":[]},{"given":"Guanjie","family":"Zheng","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,8,22]]},"reference":[{"key":"3_CR1","doi-asserted-by":"crossref","unstructured":"Akagi, Y., Nishimura, T., Kurashima, T., Toda, H.: A fast and accurate method for estimating people flow from spatiotemporal population data. In: IJCAI, pp. 3293\u20133300 (2018)","DOI":"10.24963\/ijcai.2018\/457"},{"key":"3_CR2","unstructured":"Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recurrent network for traffic forecasting. arXiv preprint arXiv:2007.02842 (2020)"},{"key":"3_CR3","unstructured":"Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597\u20131607. PMLR (2020)"},{"key":"3_CR4","doi-asserted-by":"crossref","unstructured":"Choi, J., Choi, H., Hwang, J., Park, N.: Graph neural controlled differential equations for traffic forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a036, pp. 6367\u20136374 (2022)","DOI":"10.1609\/aaai.v36i6.20587"},{"key":"3_CR5","doi-asserted-by":"crossref","unstructured":"Cirstea, R.G., Yang, B., Guo, C., Kieu, T., Pan, S.: Towards spatio-temporal aware traffic time series forecasting. In: 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 2900\u20132913. IEEE (2022)","DOI":"10.1109\/ICDE53745.2022.00262"},{"key":"3_CR6","unstructured":"Didi, G.i.: Didi chuxing data. https:\/\/gaia.didichuxing.com (2020)"},{"key":"3_CR7","doi-asserted-by":"crossref","unstructured":"Duan, W., He, X., Zhou, Z., Thiele, L., Rao, H.: Localised adaptive spatial-temporal graph neural network. arXiv preprint arXiv:2306.06930 (2023)","DOI":"10.1145\/3580305.3599418"},{"key":"3_CR8","doi-asserted-by":"crossref","unstructured":"Fan, Y., et al.: Spatial-temporal graph boosting networks: enhancing spatial-temporal graph neural networks via gradient boosting. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 504\u2013513 (2023)","DOI":"10.1145\/3583780.3615066"},{"key":"3_CR9","doi-asserted-by":"crossref","unstructured":"Fang, S., Zhang, Q., Meng, G., Xiang, S., Pan, C.: Gstnet: global spatial-temporal network for traffic flow prediction. In: IJCAI, pp. 2286\u20132293 (2019)","DOI":"10.24963\/ijcai.2019\/317"},{"key":"3_CR10","doi-asserted-by":"crossref","unstructured":"Gupta, M., Kodamana, H., Ranu, S.: Frigate: Frugal spatio-temporal forecasting on road networks. arXiv preprint arXiv:2306.08277 (2023)","DOI":"10.1145\/3580305.3599357"},{"key":"3_CR11","doi-asserted-by":"crossref","unstructured":"He, K., Chen, X., Xie, S., Li, Y., Doll\u00e1r, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 16000\u201316009 (2022)","DOI":"10.1109\/CVPR52688.2022.01553"},{"key":"3_CR12","doi-asserted-by":"crossref","unstructured":"Huang, R., Huang, C., Liu, Y., Dai, G., Kong, W.: Lsgcn: long short-term traffic prediction with graph convolutional networks. In: IJCAI, pp. 2355\u20132361 (2020)","DOI":"10.24963\/ijcai.2020\/326"},{"key":"3_CR13","doi-asserted-by":"crossref","unstructured":"Ji, J., Wang, J., Jiang, Z., Jiang, J., Zhang, H.: STDEN: towards physics-guided neural networks for traffic flow prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a036, pp. 4048\u20134056 (2022)","DOI":"10.1609\/aaai.v36i4.20322"},{"key":"3_CR14","doi-asserted-by":"crossref","unstructured":"Jiang, J., Wu, B., Chen, L., Zhang, K., Kim, S.: Enhancing the robustness via adversarial learning and joint spatial-temporal embeddings in traffic forecasting. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 987\u2013996 (2023)","DOI":"10.1145\/3583780.3614868"},{"key":"3_CR15","doi-asserted-by":"crossref","unstructured":"Jin, Y., Chen, K., Yang, Q.: Selective cross-city transfer learning for traffic prediction via source city region re-weighting. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 731\u2013741 (2022)","DOI":"10.1145\/3534678.3539250"},{"key":"3_CR16","doi-asserted-by":"crossref","unstructured":"Jin, Y., Chen, K., Yang, Q.: Transferable graph structure learning for graph-based traffic forecasting across cities. In: Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1032\u20131043 (2023)","DOI":"10.1145\/3580305.3599529"},{"key":"3_CR17","doi-asserted-by":"crossref","unstructured":"Kang, Z., Liu, Z., Pan, S., Tian, L.: Fine-grained attributed graph clustering. In: Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), pp. 370\u2013378. SIAM (2022)","DOI":"10.1137\/1.9781611977172.42"},{"key":"3_CR18","unstructured":"Lan, S., Ma, Y., Huang, W., Wang, W., Yang, H., Li, P.: Dstagnn: dynamic spatial-temporal aware graph neural network for traffic flow forecasting. In: International Conference on Machine Learning, pp. 11906\u201311917. PMLR (2022)"},{"key":"3_CR19","doi-asserted-by":"crossref","unstructured":"Li, M., Zhu, Z.: Spatial-temporal fusion graph neural networks for traffic flow forecasting. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol.\u00a035, pp. 4189\u20134196 (2021)","DOI":"10.1609\/aaai.v35i5.16542"},{"key":"3_CR20","unstructured":"Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting. arXiv preprint arXiv:1707.01926 (2017)"},{"key":"3_CR21","unstructured":"Liang, C., et al.: Cblab: Scalable traffic simulation with enriched data supporting. arXiv preprint arXiv:2210.00896 (2022)"},{"issue":"2","key":"3_CR22","doi-asserted-by":"publisher","first-page":"871","DOI":"10.1109\/TITS.2013.2247040","volume":"14","author":"M Lippi","year":"2013","unstructured":"Lippi, M., Bertini, M., Frasconi, P.: Short-term traffic flow forecasting: an experimental comparison of time-series analysis and supervised learning. IEEE Trans. Intell. Transport. Syst. 14(2), 871\u2013882 (2013)","journal-title":"IEEE Trans. Intell. Transport. Syst."},{"key":"3_CR23","doi-asserted-by":"crossref","unstructured":"Liu, Z., Liang, C., Zheng, G., Wei, H.: Fdti: fine-grained deep traffic inference with roadnet-enriched graph. arXiv preprint arXiv:2306.10945 (2023)","DOI":"10.1007\/978-3-031-43430-3_11"},{"key":"3_CR24","doi-asserted-by":"crossref","unstructured":"Liu, Z., Zheng, G., Yu, Y.: Cross-city few-shot traffic forecasting via traffic pattern bank. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 1451\u20131460 (2023)","DOI":"10.1145\/3583780.3614829"},{"key":"3_CR25","doi-asserted-by":"crossref","unstructured":"Liu, Z., Zheng, G., Yu, Y.: Multi-scale traffic pattern bank for cross-city few-shot traffic forecasting. arXiv preprint arXiv:2402.00397 (2024)","DOI":"10.1145\/3583780.3614829"},{"key":"3_CR26","doi-asserted-by":"crossref","unstructured":"Lu, B., Gan, X., Zhang, W., Yao, H., Fu, L., Wang, X.: Spatio-temporal graph few-shot learning with cross-city knowledge transfer. arXiv preprint arXiv:2205.13947 (2022)","DOI":"10.1145\/3534678.3539281"},{"key":"3_CR27","doi-asserted-by":"crossref","unstructured":"Ma, Q., Zhang, Z., Zhao, X., Li, H., Zhao, H., Wang, Y., Liu, Z., Wang, W.: Rethinking sensors modeling: Hierarchical information enhanced traffic forecasting. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. pp. 1756\u20131765 (2023)","DOI":"10.1145\/3583780.3614910"},{"key":"3_CR28","unstructured":"Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)"},{"key":"3_CR29","unstructured":"Nie, Y., Nguyen, N.H., Sinthong, P., Kalagnanam, J.: A time series is worth 64 words: long-term forecasting with transformers. arXiv preprint arXiv:2211.14730 (2022)"},{"key":"3_CR30","doi-asserted-by":"crossref","unstructured":"Nikravesh, A.Y., Ajila, S.A., Lung, C.H., Ding, W.: Mobile network traffic prediction using mlp, mlpwd, and svm. In: 2016 IEEE International Congress on Big Data (BigData Congress), pp. 402\u2013409. IEEE (2016)","DOI":"10.1109\/BigDataCongress.2016.63"},{"key":"3_CR31","doi-asserted-by":"crossref","unstructured":"Ouyang, X., Yang, Y., Zhou, W., Zhang, Y., Wang, H., Huang, W.: Citytrans: domain-adversarial training with knowledge transfer for spatio-temporal prediction across cities. IEEE Transactions on Knowledge and Data Engineering (2023)","DOI":"10.1109\/TKDE.2023.3283520"},{"key":"3_CR32","doi-asserted-by":"crossref","unstructured":"Pan, Z., Liang, Y., Wang, W., Yu, Y., Zheng, Y., Zhang, J.: Urban traffic prediction from spatio-temporal data using deep meta learning. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1720\u20131730 (2019)","DOI":"10.1145\/3292500.3330884"},{"key":"3_CR33","doi-asserted-by":"crossref","unstructured":"Rao, X., Wang, H., Zhang, L., Li, J., Shang, S., Han, P.: Fogs: first-order gradient supervision with learning-based graph for traffic flow forecasting. In: Proceedings of International Joint Conference on Artificial Intelligence, IJCAI. ijcai. org (2022)","DOI":"10.24963\/ijcai.2022\/545"},{"key":"3_CR34","doi-asserted-by":"crossref","unstructured":"Shao, Z., Zhang, Z., Wang, F., Xu, Y.: Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting. In: Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1567\u20131577 (2022)","DOI":"10.1145\/3534678.3539396"},{"key":"3_CR35","doi-asserted-by":"crossref","unstructured":"Shao, Z., et al.: Decoupled dynamic spatial-temporal graph neural network for traffic forecasting. arXiv preprint arXiv:2206.09112 (2022)","DOI":"10.14778\/3551793.3551827"},{"key":"3_CR36","doi-asserted-by":"crossref","unstructured":"Wang, L., Geng, X., Ma, X., Liu, F., Yang, Q.: Cross-city transfer learning for deep spatio-temporal prediction. arXiv preprint arXiv:1802.00386 (2018)","DOI":"10.24963\/ijcai.2019\/262"},{"key":"3_CR37","doi-asserted-by":"crossref","unstructured":"Wang, Y., Jin, H., Zheng, G.: Ctrl: Cooperative traffic tolling via reinforcement learning. In: Proceedings of the 31st ACM International Conference on Information and Knowledge Management, pp. 3545\u20133554 (2022)","DOI":"10.1145\/3511808.3557112"},{"key":"3_CR38","doi-asserted-by":"crossref","unstructured":"Wei, H., Zheng, G., Yao, H., Li, Z.: Intellilight: a reinforcement learning approach for intelligent traffic light control. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2496\u20132505 (2018)","DOI":"10.1145\/3219819.3220096"},{"key":"3_CR39","doi-asserted-by":"crossref","unstructured":"Wei, Y., Zheng, Y., Yang, Q.: Transfer knowledge between cities. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1905\u20131914 (2016)","DOI":"10.1145\/2939672.2939830"},{"key":"3_CR40","doi-asserted-by":"crossref","unstructured":"Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-temporal graph modeling. arXiv preprint arXiv:1906.00121 (2019)","DOI":"10.24963\/ijcai.2019\/264"},{"key":"3_CR41","doi-asserted-by":"crossref","unstructured":"Yao, H., Liu, Y., Wei, Y., Tang, X., Li, Z.: Learning from multiple cities: a meta-learning approach for spatial-temporal prediction. In: The World Wide Web Conference, pp. 2181\u20132191 (2019)","DOI":"10.1145\/3308558.3313577"},{"key":"3_CR42","doi-asserted-by":"crossref","unstructured":"Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)","DOI":"10.24963\/ijcai.2018\/505"},{"key":"3_CR43","doi-asserted-by":"crossref","unstructured":"Yuan, Y., Ding, J., Feng, J., Jin, D., Li, Y.: Unist: a prompt-empowered universal model for urban spatio-temporal prediction. arXiv preprint arXiv:2402.11838 (2024)","DOI":"10.1145\/3637528.3671662"},{"key":"3_CR44","doi-asserted-by":"crossref","unstructured":"Zeng, A., Chen, M., Zhang, L., Xu, Q.: Are transformers effective for time series forecasting? In: Proceedings of the AAAI Conference on Artificial Intelligence. vol.\u00a037, pp. 11121\u201311128 (2023)","DOI":"10.1609\/aaai.v37i9.26317"},{"key":"3_CR45","doi-asserted-by":"crossref","unstructured":"Zhang, X., Gong, Y., Zhang, X., Wu, X., Zhang, C., Dong, X.: Mask-and contrast-enhanced spatio-temporal learning for urban flow prediction. In: Proceedings of the 32nd ACM International Conference on Information and Knowledge Management, pp. 3298\u20133307 (2023)","DOI":"10.1145\/3583780.3614958"},{"key":"3_CR46","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Li, Y., Zhou, X., Kong, X., Luo, J.: Strans-gan: spatially-transferable generative adversarial networks for urban traffic estimation. In: 2022 IEEE International Conference on Data Mining, pp. 743\u2013752. IEEE (2022)","DOI":"10.1109\/ICDM54844.2022.00085"},{"key":"3_CR47","doi-asserted-by":"crossref","unstructured":"Zheng, C., Fan, X., Wang, C., Qi, J.: Gman: a graph multi-attention network for traffic prediction. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol.\u00a034, pp. 1234\u20131241 (2020)","DOI":"10.1609\/aaai.v34i01.5477"},{"key":"3_CR48","unstructured":"Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., Jin, R.: Fedformer: frequency enhanced decomposed transformer for long-term series forecasting. In: International Conference on Machine Learning, pp. 27268\u201327286. PMLR (2022)"}],"container-title":["Lecture Notes in Computer Science","Machine Learning and Knowledge Discovery in Databases. Research Track"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-70344-7_3","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T08:04:27Z","timestamp":1724918667000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-70344-7_3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031703430","9783031703447"],"references-count":48,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-70344-7_3","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"22 August 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The data used in this paper (Chengdu, Shenzhen, PEMS-BAY, and METR-LA) are public open-sourced benchmark datasets, which are wildly used in academic research. No personally identifiable information was obtained and people can not infer personal information through the data. The potential use of this work is traffic knowledge transfer across cities, and this work could benefit the downstream applications of developing cities with little traffic data. This work is not potentially a part of policing or military work. The authors of this paper are committed to ethical principles and guidelines in conducting research and have taken measures to ensure the integrity and validity of the data. The use of the data in this study is in accordance with ethical standards and is intended to advance knowledge in the field of cross-city few-shot traffic forecasting.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Ethical Statement"}},{"value":"ECML PKDD","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Vilnius","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Lithuania","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"8 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"12 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ecml2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2024.ecmlpkdd.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}