{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,25]],"date-time":"2024-09-25T04:18:09Z","timestamp":1727237889608},"publisher-location":"Cham","reference-count":40,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031700736","type":"print"},{"value":"9783031700743","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-70074-3_7","type":"book-chapter","created":{"date-parts":[[2024,9,24]],"date-time":"2024-09-24T05:48:57Z","timestamp":1727156937000},"page":"116-136","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["An Adaptive Interpretable Safe-RL Approach for\u00a0Addressing Smart Grid Supply-Side Uncertainties"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6004-9100","authenticated-orcid":false,"given":"Sumanta","family":"Dey","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5942-4375","authenticated-orcid":false,"given":"Praveen","family":"Verma","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2178-8154","authenticated-orcid":false,"given":"Pallab","family":"Dasgupta","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9329-6389","authenticated-orcid":false,"given":"Soumyajit","family":"Dey","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,25]]},"reference":[{"key":"7_CR1","doi-asserted-by":"crossref","unstructured":"Abbeel, P., Coates, A., Ng, A.Y.: Autonomous helicopter aerobatics through apprenticeship learning. Int. J. Robot. Res. (IJRR) 29 (2010)","DOI":"10.1177\/0278364910371999"},{"key":"7_CR2","unstructured":"Achiam, J., Held, D., Tamar, A., Abbeel, P.: Constrained policy optimization. In: International Conference on Machine Learning (2017)"},{"issue":"4","key":"7_CR3","doi-asserted-by":"publisher","DOI":"10.1016\/j.heliyon.2024.e26088","volume":"10","author":"T Alazemi","year":"2024","unstructured":"Alazemi, T., Darwish, M., Radi, M.: Renewable energy sources integration via machine learning modelling: a systematic literature review. Heliyon 10(4), e26088 (2024). https:\/\/doi.org\/10.1016\/j.heliyon.2024.e26088","journal-title":"Heliyon"},{"key":"7_CR4","doi-asserted-by":"crossref","unstructured":"Alshiekh, M., Bloem, R., Ehlers, R., K\u00f6nighofer, B., Niekum, S., Topcu, U.: Safe reinforcement learning via shielding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a032 (2018)","DOI":"10.1609\/aaai.v32i1.11797"},{"key":"7_CR5","unstructured":"Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Man\u00e9, D.: Concrete problems in AI safety. arXiv preprint arXiv:1606.06565 (2016)"},{"key":"7_CR6","doi-asserted-by":"publisher","unstructured":"Berkenkamp, F., Moriconi, R., Schoellig, A.P., Krause, A.: Safe learning of regions of attraction for uncertain, nonlinear systems with Gaussian processes. In: 2016 IEEE 55th Conference on Decision and Control. CDC 2016, pp. 4661\u20134666 (2016). https:\/\/doi.org\/10.1109\/CDC.2016.7798979","DOI":"10.1109\/CDC.2016.7798979"},{"key":"7_CR7","doi-asserted-by":"publisher","unstructured":"Bhattacharya, K., Bollen, M., E.\u00a0Daalder, J.: Operation of Restructured Power Systems (2001). https:\/\/doi.org\/10.1007\/978-1-4615-1465-7","DOI":"10.1007\/978-1-4615-1465-7"},{"key":"7_CR8","unstructured":"Center, S.L.D.: Power maps all regions 2013. https:\/\/www.coursehero.com\/file\/65794401\/Power-maps-All-Regions-2013pdf\/"},{"key":"7_CR9","unstructured":"Chow, Y., Nachum, O., Duenez-Guzman, E., Ghavamzadeh, M.: A Lyapunov-based approach to safe reinforcement learning. arXiv preprint arXiv:1805.07708 (2018)"},{"issue":"2","key":"7_CR10","doi-asserted-by":"publisher","first-page":"170","DOI":"10.1109\/5.823997","volume":"88","author":"RD Christie","year":"2000","unstructured":"Christie, R.D., Wollenberg, B.F., Wangensteen, I.: Transmission management in the deregulated environment. Proc. IEEE 88(2), 170\u2013195 (2000)","journal-title":"Proc. IEEE"},{"key":"7_CR11","unstructured":"Dey, S., Dasgupta, P., Gangopadhyay, B.: Safety augmentation in decision trees. In: Proceedings of the Workshop on Artificial Intelligence Safety 2020 co-located with the 29th International Joint Conference on Artificial Intelligence and the 17th Pacific Rim International Conference on Artificial Intelligence (IJCAI-PRICAI 2020), Yokohama, Japan, January 2021. CEUR Workshop Proceedings, vol.\u00a02640. CEUR-WS.org (2020)"},{"issue":"4","key":"7_CR12","doi-asserted-by":"publisher","first-page":"5034","DOI":"10.1109\/TNSM.2022.3194566","volume":"19","author":"S Dey","year":"2022","unstructured":"Dey, S., Mujumdar, A., Dasgupta, P., Dey, S.: Adaptive safety shields for reinforcement learning-based cell shaping. IEEE Trans. Netw. Serv. Manag. 19(4), 5034\u20135043 (2022). https:\/\/doi.org\/10.1109\/TNSM.2022.3194566","journal-title":"IEEE Trans. Netw. Serv. Manag."},{"key":"7_CR13","unstructured":"Di\u00a0Castro, D., Tamar, A., Mannor, S.: Policy gradients with variance related risk criteria. arXiv preprint arXiv:1206.6404 (2012)"},{"key":"7_CR14","doi-asserted-by":"publisher","first-page":"31692","DOI":"10.1109\/ACCESS.2022.3160484","volume":"10","author":"M Elsaraiti","year":"2022","unstructured":"Elsaraiti, M., Merabet, A.: Solar power forecasting using deep learning techniques. IEEE Access 10, 31692\u201331698 (2022)","journal-title":"IEEE Access"},{"issue":"2","key":"7_CR15","doi-asserted-by":"publisher","first-page":"745","DOI":"10.1109\/TII.2016.2530402","volume":"12","author":"MM Esfahani","year":"2016","unstructured":"Esfahani, M.M., Yousefi, G.R.: Real time congestion management in power systems considering quasi-dynamic thermal rating and congestion clearing time. IEEE Trans. Industr. Inf. 12(2), 745\u2013754 (2016)","journal-title":"IEEE Trans. Industr. Inf."},{"key":"7_CR16","doi-asserted-by":"crossref","unstructured":"Feghhi, S., Aumayr, E., Vannella, F., Hakim, E.A., Iakovidis, G.: Safe reinforcement learning for antenna tilt optimisation using shielding and multiple baselines. arXiv preprint arXiv:2012.01296 (2020)","DOI":"10.1109\/PIMRC50174.2021.9569387"},{"key":"7_CR17","doi-asserted-by":"crossref","unstructured":"Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: toward safe control through proof and learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a032 (2018)","DOI":"10.1609\/aaai.v32i1.12107"},{"issue":"1","key":"7_CR18","first-page":"1437","volume":"16","author":"J Garc\u0131a","year":"2015","unstructured":"Garc\u0131a, J., Fern\u00e1ndez, F.: A comprehensive survey on safe reinforcement learning. J. Mach. Learn. Res. 16(1), 1437\u20131480 (2015)","journal-title":"J. Mach. Learn. Res."},{"key":"7_CR19","doi-asserted-by":"publisher","unstructured":"Geibel, P., Wysotzki, F.: Risk-sensitive reinforcement learning applied to control under constraints. J. Artif. Intell. Res. 24, 81\u2013108 (2005). https:\/\/doi.org\/10.1613\/jair.1666","DOI":"10.1613\/jair.1666"},{"key":"7_CR20","doi-asserted-by":"publisher","unstructured":"Glavic, M., Fonteneau, R., Ernst, D.: Reinforcement learning for electric power system decision and control: past considerations and perspectives. IFAC-PapersOnLine 50(1), 6918\u20136927 (2017). https:\/\/doi.org\/10.1016\/j.ifacol.2017.08.1217, 20th IFAC World Congress","DOI":"10.1016\/j.ifacol.2017.08.1217"},{"key":"7_CR21","unstructured":"HUB, E.S.: Photovoltaic geographical information system (pvgis) (2019). https:\/\/ec.europa.eu\/jrc\/en\/pvgis"},{"issue":"1","key":"7_CR22","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1016\/S0378-7796(02)00088-3","volume":"63","author":"T Imthias Ahamed","year":"2002","unstructured":"Imthias Ahamed, T., Nagendra Rao, P., Sastry, P.: A reinforcement learning approach to automatic generation control. Electr. Power Syst. Res. 63(1), 9\u201326 (2002). https:\/\/doi.org\/10.1016\/S0378-7796(02)00088-3","journal-title":"Electr. Power Syst. Res."},{"key":"7_CR23","unstructured":"Government\u00a0of India, M.o.N., Energy, R.: Current status: Ministry of new and renewable energy, Government of India. https:\/\/mnre.gov.in\/solar\/current-status\/"},{"key":"7_CR24","doi-asserted-by":"publisher","unstructured":"Liu, Z., et al.: Artificial intelligence powered large-scale renewable integrations in multi-energy systems for carbon neutrality transition: challenges and future perspectives. Energy AI 10, 100195 (2022). https:\/\/doi.org\/10.1016\/j.egyai.2022.100195","DOI":"10.1016\/j.egyai.2022.100195"},{"key":"7_CR25","doi-asserted-by":"crossref","unstructured":"Maiti, S., Balabhaskara, A., Adhikary, S., Koley, I., Dey, S.: Targeted attack synthesis for smart grid vulnerability analysis. In: Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security, pp. 2576\u20132590 (2023)","DOI":"10.1145\/3576915.3623155"},{"key":"7_CR26","unstructured":"Mnih, V., et al.: Playing Atari with deep reinforcement learning. arXiv abs\/1312.5602 (2013)"},{"key":"7_CR27","doi-asserted-by":"crossref","unstructured":"van Otterlo, M., Wiering, M.A.: Markov Decision Processes: Concepts and Algorithms (2012)","DOI":"10.1007\/978-3-642-27645-3_1"},{"key":"7_CR28","unstructured":"Perkins, T.J., Barto, A.G.: Lyapunov design for safe reinforcement learning. J. Mach. Learn. Res. 3(Dec), 803\u2013832 (2002)"},{"key":"7_CR29","unstructured":"Ray, A., Achiam, J., Amodei, D.: Benchmarking Safe Exploration in Deep Reinforcement Learning (2019)"},{"issue":"12","key":"7_CR30","doi-asserted-by":"publisher","first-page":"1623","DOI":"10.1109\/PROC.1987.13931","volume":"75","author":"B Stott","year":"1987","unstructured":"Stott, B., Alsac, O., Monticelli, A.J.: Security analysis and optimization. Proc. IEEE 75(12), 1623\u20131644 (1987)","journal-title":"Proc. IEEE"},{"key":"7_CR31","unstructured":"Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (2018)"},{"key":"7_CR32","unstructured":"Sutton, R.S., Barto, A.G., et\u00a0al.: Introduction to Reinforcement Learning, vol.\u00a0135. MIT Press, Cambridge (1998)"},{"issue":"5\u20136","key":"7_CR33","doi-asserted-by":"publisher","first-page":"379","DOI":"10.1016\/j.ijepes.2005.02.003","volume":"27","author":"B Talukdar","year":"2005","unstructured":"Talukdar, B., Sinha, A., Mukhopadhyay, S., Bose, A.: A computationally simple method for cost-efficient generation rescheduling and load shedding for congestion management. Int. J. Electric. Power Energy Syst. 27(5\u20136), 379\u2013388 (2005)","journal-title":"Int. J. Electric. Power Energy Syst."},{"key":"7_CR34","doi-asserted-by":"publisher","unstructured":"Verma, P., Dasgupta, P., Chakraborty, C.: Ml-assisted real time congestion mitigation under supply-side uncertainties. In: 2021 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), pp.\u00a01\u20135 (2021). https:\/\/doi.org\/10.1109\/ISGTAsia49270.2021.9715620","DOI":"10.1109\/ISGTAsia49270.2021.9715620"},{"issue":"3","key":"7_CR35","doi-asserted-by":"publisher","first-page":"1317","DOI":"10.1109\/TPWRS.2004.831259","volume":"19","author":"J Vlachogiannis","year":"2004","unstructured":"Vlachogiannis, J., Hatziargyriou, N.: Reinforcement learning for reactive power control. IEEE Trans. Power Syst. 19(3), 1317\u20131325 (2004). https:\/\/doi.org\/10.1109\/TPWRS.2004.831259","journal-title":"IEEE Trans. Power Syst."},{"key":"7_CR36","doi-asserted-by":"publisher","unstructured":"Xu, Y., Zhang, W., Liu, W., Ferrese, F.: Multiagent-based reinforcement learning for optimal reactive power dispatch. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 1742\u20131751 (2012). https:\/\/doi.org\/10.1109\/TSMCC.2012.2218596","DOI":"10.1109\/TSMCC.2012.2218596"},{"key":"7_CR37","doi-asserted-by":"publisher","unstructured":"Yu, T., Zhou, B., Chan, K.W., Yuan, Y., Yang, B., Wu, Q.H.: R($$\\lambda $$) imitation learning for automatic generation control of interconnected power grids. Automatica 48(9), 2130\u20132136 (2012). https:\/\/doi.org\/10.1016\/j.automatica.2012.05.043","DOI":"10.1016\/j.automatica.2012.05.043"},{"issue":"3","key":"7_CR38","doi-asserted-by":"publisher","first-page":"1272","DOI":"10.1109\/TPWRS.2010.2102372","volume":"26","author":"T Yu","year":"2011","unstructured":"Yu, T., Zhou, B., Chan, K.W., Chen, L., Yang, B.: Stochastic optimal relaxed automatic generation control in non-Markov environment based on multi-step q($$\\lambda $$) learning. IEEE Trans. Power Syst. 26(3), 1272\u20131282 (2011). https:\/\/doi.org\/10.1109\/TPWRS.2010.2102372","journal-title":"IEEE Trans. Power Syst."},{"key":"7_CR39","doi-asserted-by":"publisher","unstructured":"Zarrabian, S., Belkacemi, R., Babalola, A.A.: Reinforcement learning approach for congestion management and cascading failure prevention with experimental application. Electr. Power Syst. Res. 141(C), 179\u2013190 (2016). https:\/\/doi.org\/10.1016\/j.epsr.2016.06.041","DOI":"10.1016\/j.epsr.2016.06.041"},{"key":"7_CR40","doi-asserted-by":"publisher","unstructured":"Zhao, N., You, F.: Sustainable power systems operations under renewable energy induced disjunctive uncertainties via machine learning-based robust optimization. Renew. Sustain. Energy Rev. 161, 112428 (2022). https:\/\/doi.org\/10.1016\/j.rser.2022.112428","DOI":"10.1016\/j.rser.2022.112428"}],"container-title":["Lecture Notes in Computer Science","Explainable and Transparent AI and Multi-Agent Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-70074-3_7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,24]],"date-time":"2024-09-24T05:50:31Z","timestamp":1727157031000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-70074-3_7"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031700736","9783031700743"],"references-count":40,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-70074-3_7","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"25 September 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EXTRAAMAS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Workshop on Explainable, Transparent Autonomous Agents and Multi-Agent Systems","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Auckland","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"New Zealand","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 May 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10 May 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"extraamas2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/extraamas.ehealth.hevs.ch\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}