{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T00:32:49Z","timestamp":1725669169740},"publisher-location":"Cham","reference-count":45,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031700545","type":"print"},{"value":"9783031700552","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-70055-2_14","type":"book-chapter","created":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T23:02:54Z","timestamp":1725663774000},"page":"221-237","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Symbol Graph Genetic Programming for\u00a0Symbolic Regression"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0008-0660-7694","authenticated-orcid":false,"given":"Jinglu","family":"Song","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8217-2305","authenticated-orcid":false,"given":"Qiang","family":"Lu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0009-9694-3313","authenticated-orcid":false,"given":"Bozhou","family":"Tian","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7234-7220","authenticated-orcid":false,"given":"Jingwen","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3900-643X","authenticated-orcid":false,"given":"Jake","family":"Luo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1325-5067","authenticated-orcid":false,"given":"Zhiguang","family":"Wang","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,9,7]]},"reference":[{"key":"14_CR1","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"35","DOI":"10.1007\/978-3-319-77553-1_3","volume-title":"Genetic Programming","author":"T Atkinson","year":"2018","unstructured":"Atkinson, T., Plump, D., Stepney, S.: Evolving graphs by graph programming. In: Castelli, M., Sekanina, L., Zhang, M., Cagnoni, S., Garc\u00eda-S\u00e1nchez, P. (eds.) EuroGP 2018. LNCS, vol. 10781, pp. 35\u201351. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-77553-1_3"},{"key":"14_CR2","unstructured":"Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., Parascandolo, G.: Neural symbolic regression that scales. In: International Conference on Machine Learning, pp. 936\u2013945. PMLR (2021)"},{"key":"14_CR3","unstructured":"Brameier, M., Banzhaf, W., Banzhaf, W.: Linear genetic programming, vol.\u00a01. Springer (2007)"},{"key":"14_CR4","doi-asserted-by":"crossref","unstructured":"Card, S.W., Mohan, C.K.: Towards an information theoretic framework for genetic programming. Genetic Programming Theory and Practice V, pp. 87\u2013106 (2008)","DOI":"10.1007\/978-0-387-76308-8_6"},{"issue":"3","key":"14_CR5","doi-asserted-by":"publisher","first-page":"488","DOI":"10.1109\/TEVC.2018.2869621","volume":"23","author":"Q Chen","year":"2018","unstructured":"Chen, Q., Xue, B., Zhang, M.: Improving generalization of genetic programming for symbolic regression with angle-driven geometric semantic operators. IEEE Trans. Evol. Comput. 23(3), 488\u2013502 (2018)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"14_CR6","doi-asserted-by":"crossref","unstructured":"Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785\u2013794 (2016)","DOI":"10.1145\/2939672.2939785"},{"key":"14_CR7","doi-asserted-by":"publisher","unstructured":"Davison, A.C.: Modelling excesses over high thresholds, with an application. In: Statistical Extremes and Aplications, pp. 461\u2013482. Springer, Dordrecht (1984). https:\/\/doi.org\/10.1007\/978-94-017-3069-3_34","DOI":"10.1007\/978-94-017-3069-3_34"},{"key":"14_CR8","unstructured":"Ferreira, C.: Gene expression programming: a new adaptive algorithm for solving problems. arXiv preprint cs\/0102027 (2001)"},{"key":"14_CR9","unstructured":"de\u00a0Franca, F., et\u00a0al.: Interpretable symbolic regression for data science: Analysis of the 2022 competition. arXiv preprint arXiv:2304.01117 (2023)"},{"key":"14_CR10","doi-asserted-by":"crossref","unstructured":"He, B., Lu, Q., Yang, Q., Luo, J., Wang, Z.: Taylor genetic programming for symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 946\u2013954 (2022)","DOI":"10.1145\/3512290.3528757"},{"issue":"3","key":"14_CR11","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1080\/00401706.1987.10488243","volume":"29","author":"JR Hosking","year":"1987","unstructured":"Hosking, J.R., Wallis, J.R.: Parameter and quantile estimation for the generalized pareto distribution. Technometrics 29(3), 339\u2013349 (1987)","journal-title":"Technometrics"},{"issue":"9","key":"14_CR12","doi-asserted-by":"publisher","first-page":"4166","DOI":"10.1109\/TNNLS.2020.3017010","volume":"32","author":"S Kim","year":"2020","unstructured":"Kim, S., Lu, P.Y., Mukherjee, S., Gilbert, M., Jing, L., \u010ceperi\u0107, V., Solja\u010di\u0107, M.: Integration of neural network-based symbolic regression in deep learning for scientific discovery. IEEE Trans. Neural Networks Learn. Syst. 32(9), 4166\u20134177 (2020)","journal-title":"IEEE Trans. Neural Networks Learn. Syst."},{"issue":"3","key":"14_CR13","doi-asserted-by":"publisher","first-page":"471","DOI":"10.1007\/s10710-019-09371-3","volume":"21","author":"M Kommenda","year":"2020","unstructured":"Kommenda, M., Burlacu, B., Kronberger, G., Affenzeller, M.: Parameter identification for symbolic regression using nonlinear least squares. Genet. Program Evolvable Mach. 21(3), 471\u2013501 (2020)","journal-title":"Genet. Program Evolvable Mach."},{"key":"14_CR14","doi-asserted-by":"crossref","unstructured":"Korns, M.F.: A baseline symbolic regression algorithm. Genetic Programming Theory and Practice X, pp. 117\u2013137 (2013)","DOI":"10.1007\/978-1-4614-6846-2_9"},{"key":"14_CR15","doi-asserted-by":"publisher","first-page":"87","DOI":"10.1007\/BF00175355","volume":"4","author":"JR Koza","year":"1994","unstructured":"Koza, J.R.: Genetic programming as a means for programming computers by natural selection. Stat. Comput. 4, 87\u2013112 (1994)","journal-title":"Stat. Comput."},{"key":"14_CR16","doi-asserted-by":"crossref","unstructured":"Krawiec, K., Lichocki, P.: Approximating geometric crossover in semantic space. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 987\u2013994 (2009)","DOI":"10.1145\/1569901.1570036"},{"key":"14_CR17","doi-asserted-by":"crossref","unstructured":"Krawiec, K., Pawlak, T.: Approximating geometric crossover by semantic backpropagation. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 941\u2013948 (2013)","DOI":"10.1145\/2463372.2463483"},{"key":"14_CR18","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1007\/s10710-012-9172-7","volume":"14","author":"K Krawiec","year":"2013","unstructured":"Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Genet. Program Evolvable Mach. 14, 31\u201363 (2013)","journal-title":"Genet. Program Evolvable Mach."},{"key":"14_CR19","doi-asserted-by":"publisher","first-page":"292","DOI":"10.1016\/j.engappai.2016.07.004","volume":"55","author":"W La Cava","year":"2016","unstructured":"La Cava, W., Danai, K., Spector, L.: Inference of compact nonlinear dynamic models by epigenetic local search. Eng. Appl. Artif. Intell. 55, 292\u2013306 (2016)","journal-title":"Eng. Appl. Artif. Intell."},{"key":"14_CR20","unstructured":"La\u00a0Cava, W., et al.: Contemporary symbolic regression methods and their relative performance. arXiv preprint arXiv:2107.14351 (2021)"},{"key":"14_CR21","doi-asserted-by":"publisher","first-page":"8495","DOI":"10.1007\/s00521-020-05602-2","volume":"33","author":"Q Lu","year":"2021","unstructured":"Lu, Q., Tao, F., Zhou, S., Wang, Z.: Incorporating actor-critic in Monte Carlo tree search for symbolic regression. Neural Comput. Appl. 33, 8495\u20138511 (2021)","journal-title":"Neural Comput. Appl."},{"key":"14_CR22","doi-asserted-by":"publisher","DOI":"10.1016\/j.swevo.2022.101197","volume":"75","author":"Q Lu","year":"2022","unstructured":"Lu, Q., Xu, C., Luo, J., Wang, Z.: Ab-gep: adversarial bandit gene expression programming for symbolic regression. Swarm Evol. Comput. 75, 101197 (2022)","journal-title":"Swarm Evol. Comput."},{"key":"14_CR23","doi-asserted-by":"publisher","first-page":"553","DOI":"10.1016\/j.ins.2020.08.061","volume":"547","author":"Q Lu","year":"2021","unstructured":"Lu, Q., Zhou, S., Tao, F., Luo, J., Wang, Z.: Enhancing gene expression programming based on space partition and jump for symbolic regression. Inf. Sci. 547, 553\u2013567 (2021)","journal-title":"Inf. Sci."},{"key":"14_CR24","doi-asserted-by":"crossref","unstructured":"McConaghy, T.: Ffx: Fast, scalable, deterministic symbolic regression technology. Genetic Programming Theory and Practice IX, pp. 235\u2013260 (2011)","DOI":"10.1007\/978-1-4614-1770-5_13"},{"key":"14_CR25","doi-asserted-by":"crossref","unstructured":"McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O\u2019neill, M.: Grammar-based genetic programming: a survey. Genetic Programming Evolvable Mach. 11, 365\u2013396 (2010)","DOI":"10.1007\/s10710-010-9109-y"},{"key":"14_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"134","DOI":"10.1007\/978-3-540-78671-9_12","volume-title":"Genetic Programming","author":"NF McPhee","year":"2008","unstructured":"McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic programming. In: O\u2019Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alc\u00e1zar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134\u2013145. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-78671-9_12"},{"key":"14_CR27","doi-asserted-by":"crossref","unstructured":"Miller, J.F., Harding, S.L.: Cartesian genetic programming. In: Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 2701\u20132726 (2008)","DOI":"10.1145\/1388969.1389075"},{"key":"14_CR28","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1007\/978-3-642-32937-1_3","volume-title":"Parallel Problem Solving from Nature - PPSN XII","author":"A Moraglio","year":"2012","unstructured":"Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 21\u201331. Springer, Heidelberg (2012). https:\/\/doi.org\/10.1007\/978-3-642-32937-1_3"},{"key":"14_CR29","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13040-017-0154-4","volume":"10","author":"RS Olson","year":"2017","unstructured":"Olson, R.S., La Cava, W., Orzechowski, P., Urbanowicz, R.J., Moore, J.H.: Pmlb: a large benchmark suite for machine learning evaluation and comparison. BioData mining 10, 1\u201313 (2017)","journal-title":"BioData mining"},{"key":"14_CR30","unstructured":"Pickands\u00a0III, J.: Statistical inference using extreme order statistics. the Annals of Statistics, pp. 119\u2013131 (1975)"},{"key":"14_CR31","unstructured":"Sahoo, S., Lampert, C., Martius, G.: Learning equations for extrapolation and control. In: International Conference on Machine Learning, pp. 4442\u20134450. PMLR (2018)"},{"key":"14_CR32","doi-asserted-by":"crossref","unstructured":"Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324(5923), 81\u201385 (2009)","DOI":"10.1126\/science.1165893"},{"key":"14_CR33","doi-asserted-by":"crossref","unstructured":"Schmidt, M.D., Lipson, H.: Age-fitness pareto optimization. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 543\u2013544 (2010)","DOI":"10.1145\/1830483.1830584"},{"issue":"3\u20134","key":"14_CR34","doi-asserted-by":"publisher","first-page":"465","DOI":"10.1007\/s00477-020-01789-x","volume":"34","author":"J Silva Lomba","year":"2020","unstructured":"Silva Lomba, J., Fraga Alves, M.I.: L-moments for automatic threshold selection in extreme value analysis. Stoch. Env. Res. Risk Assess. 34(3\u20134), 465\u2013491 (2020)","journal-title":"Stoch. Env. Res. Risk Assess."},{"key":"14_CR35","doi-asserted-by":"publisher","unstructured":"Smith, R.L.: Threshold methods for sample extremes. In: Statistical Extremes and Applications, pp. 621\u2013638. Springer, Dordrecht (1984). https:\/\/doi.org\/10.1007\/978-94-017-3069-3_48","DOI":"10.1007\/978-94-017-3069-3_48"},{"key":"14_CR36","unstructured":"Song, J., Lu, Q., Tian, B., Zhang, J., Luo, J., Wang, Z.: Prove symbolic regression is np-hard by symbol graph. arXiv preprint arXiv:2404.13820 (2024)"},{"key":"14_CR37","doi-asserted-by":"crossref","unstructured":"Udrescu, S.M., Tegmark, M.: Ai feynman: a physics-inspired method for symbolic regression. Sci. Adv 6(16), eaay2631 (2020)","DOI":"10.1126\/sciadv.aay2631"},{"key":"14_CR38","doi-asserted-by":"publisher","first-page":"195","DOI":"10.1007\/s10710-013-9210-0","volume":"15","author":"L Vanneschi","year":"2014","unstructured":"Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic programming. Genet. Program Evolvable Mach. 15, 195\u2013214 (2014)","journal-title":"Genet. Program Evolvable Mach."},{"key":"14_CR39","first-page":"1","volume":"10","author":"M Virgolin","year":"2022","unstructured":"Virgolin, M., Pissis, S.: Symbolic regression is np-hard. Trans. Mach. Learn. Res. 10, 1\u201311 (2022)","journal-title":"Trans. Mach. Learn. Res."},{"key":"14_CR40","doi-asserted-by":"crossref","unstructured":"Virgolin, M., Alderliesten, T., Bosman, P.A.: Linear scaling with and within semantic backpropagation-based genetic programming for symbolic regression. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1084\u20131092 (2019)","DOI":"10.1145\/3321707.3321758"},{"issue":"2","key":"14_CR41","doi-asserted-by":"publisher","first-page":"211","DOI":"10.1162\/evco_a_00278","volume":"29","author":"M Virgolin","year":"2021","unstructured":"Virgolin, M., Alderliesten, T., Witteveen, C., Bosman, P.A.: Improving model-based genetic programming for symbolic regression of small expressions. Evol. Comput. 29(2), 211\u2013237 (2021)","journal-title":"Evol. Comput."},{"key":"14_CR42","doi-asserted-by":"crossref","unstructured":"Zhang, H., He, S.s.: Analysis and comparison of permutation entropy, approximate entropy and sample entropy. In: 2018 International Symposium on Computer, Consumer and Control (IS3C), pp. 209\u2013212. IEEE (2018)","DOI":"10.1109\/IS3C.2018.00060"},{"key":"14_CR43","doi-asserted-by":"publisher","first-page":"67","DOI":"10.1007\/s10489-015-0696-4","volume":"44","author":"Z Zojaji","year":"2016","unstructured":"Zojaji, Z., Ebadzadeh, M.M.: Semantic schema theory for genetic programming. Appl. Intell. 44, 67\u201387 (2016)","journal-title":"Appl. Intell."},{"key":"14_CR44","doi-asserted-by":"publisher","first-page":"1442","DOI":"10.1007\/s10489-017-1052-7","volume":"48","author":"Z Zojaji","year":"2018","unstructured":"Zojaji, Z., Ebadzadeh, M.M.: Semantic schema modeling for genetic programming using clustering of building blocks. Appl. Intell. 48, 1442\u20131460 (2018)","journal-title":"Appl. Intell."},{"key":"14_CR45","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2022.108825","volume":"122","author":"Z Zojaji","year":"2022","unstructured":"Zojaji, Z., Ebadzadeh, M.M., Nasiri, H.: Semantic schema based genetic programming for symbolic regression. Appl. Soft Comput. 122, 108825 (2022)","journal-title":"Appl. Soft Comput."}],"container-title":["Lecture Notes in Computer Science","Parallel Problem Solving from Nature \u2013 PPSN XVIII"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-70055-2_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T23:04:35Z","timestamp":1725663875000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-70055-2_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031700545","9783031700552"],"references-count":45,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-70055-2_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"7 September 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"PPSN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Parallel Problem Solving from Nature","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Hagenberg","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Austria","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"14 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"18","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ppsn2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ppsn2024.fh-ooe.at\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}