{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,14]],"date-time":"2024-08-14T00:26:31Z","timestamp":1723595191122},"publisher-location":"Cham","reference-count":18,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031672774","type":"print"},{"value":"9783031672781","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-67278-1_11","type":"book-chapter","created":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T06:02:45Z","timestamp":1723528965000},"page":"134-145","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Contrastive Multitask Transformer for\u00a0Hospital Mortality and\u00a0Length-of-Stay Prediction"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4812-0437","authenticated-orcid":false,"given":"Fergus","family":"Pick","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2701-8660","authenticated-orcid":false,"given":"Xianghua","family":"Xie","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6119-058X","authenticated-orcid":false,"given":"Lin Yuanbo","family":"Wu","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,8,14]]},"reference":[{"issue":"6","key":"11_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3516367","volume":"16","author":"S Tipirneni","year":"2022","unstructured":"Tipirneni, S., Reddy, C.K.: Self-supervised transformer for sparse and irregularly sampled multivariate clinical time-series. ACM Trans. Knowl. Discov. Data 16(6), 1\u201317 (2022). https:\/\/doi.org\/10.1145\/3516367","journal-title":"ACM Trans. Knowl. Discov. Data"},{"issue":"8","key":"11_CR2","doi-asserted-by":"publisher","first-page":"958","DOI":"10.1164\/rccm.201502-0275OC","volume":"192","author":"MM Churpek","year":"2015","unstructured":"Churpek, M.M., Zadravecz, F.J., Winslow, C., Howell, M.D., Edelson, D.P.: Incidence and prognostic value of the systemic inflammatory response syndrome and organ dysfunctions in ward patients. Am. J. Respir. Crit. Care Med. 192(8), 958\u2013964 (2015). https:\/\/doi.org\/10.1164\/rccm.201502-0275OC","journal-title":"Am. J. Respir. Crit. Care Med."},{"issue":"1","key":"11_CR3","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1186\/s13017-020-00343-y","volume":"15","author":"C Koch","year":"2020","unstructured":"Koch, C., et al.: Comparison of qSOFA score, SOFA score, and SIRS criteria for the prediction of infection and mortality among surgical intermediate and intensive care patients. World J. Emerg. Surg. 15(1), 63 (2020). https:\/\/doi.org\/10.1186\/s13017-020-00343-y","journal-title":"World J. Emerg. Surg."},{"key":"11_CR4","unstructured":"Yoon, J., Jordon, J., Schaar, M.: GAIN: missing data imputation using generative adversarial nets. In: Proceedings of the 35th International Conference on Machine Learning, pp. 5689\u20135698. PMLR (2018)"},{"key":"11_CR5","unstructured":"Luo, Y., Cai, X., Zhang, Y., Xu, J., Xiaojie, Y.: Multivariate time series imputation with generative adversarial networks. Adv. Neural Inf. Process. Syst. (2018)"},{"key":"11_CR6","doi-asserted-by":"publisher","unstructured":"Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values (2016). https:\/\/doi.org\/10.48550\/arXiv.1606.01865","DOI":"10.48550\/arXiv.1606.01865"},{"key":"11_CR7","doi-asserted-by":"publisher","first-page":"109","DOI":"10.1016\/j.neunet.2020.01.001","volume":"124","author":"D Liu","year":"2020","unstructured":"Liu, D., Wu, Y.L., Li, X., Qi, L.: Medi-Care AI: predicting medications from billing codes via robust recurrent neural networks. Neural Netw. 124, 109\u2013116 (2020)","journal-title":"Neural Netw."},{"key":"11_CR8","doi-asserted-by":"publisher","DOI":"10.1038\/sdata.2016.35","volume":"3","author":"AEW Johnson","year":"2016","unstructured":"Johnson, A.E.W., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016). https:\/\/doi.org\/10.1038\/sdata.2016.35","journal-title":"Sci. Data"},{"key":"11_CR9","unstructured":"Silva, I., Moody, G., Scott, D.J., Celi, L.A., Mark, R.G.: Predicting in-hospital mortality of ICU patients: the physionet\/computing in cardiology challenge (2012)"},{"key":"11_CR10","doi-asserted-by":"publisher","unstructured":"Wang, S., McDermott, M.B.A., Chauhan, G., Ghassemi, M., Hughes, M.C., Naumann, T.: MIMIC-extract: a data extraction, preprocessing, and representation pipeline for MIMIC-III. In: Proceedings of the ACM Conference on Health, Inference, and Learning, CHIL 2020, pp. 222\u2013235. Association for Computing Machinery, New York (2020). https:\/\/doi.org\/10.1145\/3368555.3384469","DOI":"10.1145\/3368555.3384469"},{"key":"11_CR11","unstructured":"van de Water, R., Schmidt, H., Elbers, P., Thoral, P., Arnrich, B., Rockenschaub, P.: Yet another ICU benchmark: a flexible multi-center framework for clinical ML (2023)"},{"key":"11_CR12","doi-asserted-by":"publisher","unstructured":"Sikder, M.F., Ramachandranpillai, R., Heintz, F.: TransFusion: generating long, high fidelity time series using diffusion models with transformers (2023). https:\/\/doi.org\/10.48550\/arXiv.2307.12667","DOI":"10.48550\/arXiv.2307.12667"},{"key":"11_CR13","doi-asserted-by":"publisher","unstructured":"Ngufor, C., Upadhyaya, S., Murphree, D., Kor, D., Pathak, J.: Multi-task learning with selective cross-task transfer for predicting bleeding and other important patient outcomes. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1\u20138 (2015). https:\/\/doi.org\/10.1109\/DSAA.2015.7344836","DOI":"10.1109\/DSAA.2015.7344836"},{"key":"11_CR14","unstructured":"Shickel, B., Tighe, P.J., Bihorac, A., Rashidi, P.: Multi-task prediction of clinical outcomes in the intensive care unit using flexible multimodal transformers (2021)"},{"issue":"1","key":"11_CR15","doi-asserted-by":"publisher","first-page":"96","DOI":"10.1038\/s41597-019-0103-9","volume":"6","author":"H Harutyunyan","year":"2019","unstructured":"Harutyunyan, H., Khachatrian, H., Kale, D.C., Ver Steeg, G., Galstyan, A.: Multitask learning and benchmarking with clinical time series data. Sci. Data 6(1), 96 (2019). https:\/\/doi.org\/10.1038\/s41597-019-0103-9","journal-title":"Sci. Data"},{"key":"11_CR16","unstructured":"Franceschi, J.-Y., Dieuleveut, A., Jaggi, M.: Unsupervised scalable representation learning for multivariate time series (2020). Accessed 21 Feb 2023"},{"key":"11_CR17","doi-asserted-by":"publisher","unstructured":"Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., Eickhoff, C.: A transformer-based framework for multivariate time series representation learning. In: Proceedings of the ACM Conference on Knowledge Discovery & Data Mining (2021). https:\/\/doi.org\/10.1145\/3447548.3467401","DOI":"10.1145\/3447548.3467401"},{"key":"11_CR18","unstructured":"Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems. Curran Associates, Inc. (2017)"}],"container-title":["Lecture Notes in Computer Science","Artificial Intelligence in Healthcare"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-67278-1_11","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T06:04:19Z","timestamp":1723529059000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-67278-1_11"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031672774","9783031672781"],"references-count":18,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-67278-1_11","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"value":"0302-9743","type":"print"},{"value":"1611-3349","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"14 August 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AIiH","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on AI in Healthcare","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Swansea","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 September 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"6 September 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aiih2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/aiih.cc","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}