{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,10]],"date-time":"2024-07-10T00:29:42Z","timestamp":1720571382877},"publisher-location":"Cham","reference-count":34,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031638022","type":"print"},{"value":"9783031638039","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-63803-9_5","type":"book-chapter","created":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T23:03:55Z","timestamp":1720566235000},"page":"84-101","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Feature Importance to\u00a0Explain Multimodal Prediction Models. a\u00a0Clinical Use Case"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6220-0508","authenticated-orcid":false,"given":"Jorn-Jan","family":"van de Beld","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6984-8208","authenticated-orcid":false,"given":"Shreyasi","family":"Pathak","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6718-6653","authenticated-orcid":false,"given":"Jeroen","family":"Geerdink","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2188-2738","authenticated-orcid":false,"given":"Johannes H.","family":"Hegeman","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6776-3868","authenticated-orcid":false,"given":"Christin","family":"Seifert","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,7,10]]},"reference":[{"key":"5_CR1","unstructured":"Agarap, A.F.: Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375 (2019)"},{"issue":"7","key":"5_CR2","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0130140","volume":"10","author":"S Bach","year":"2015","unstructured":"Bach, S., Binder, A., Montavon, G., Klauschen, F., M\u00fcller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015). https:\/\/doi.org\/10.1371\/journal.pone.0130140","journal-title":"PLoS ONE"},{"key":"5_CR3","doi-asserted-by":"crossref","unstructured":"Briganti, G., Le\u00a0Moine, O.: Artificial intelligence in medicine: today and tomorrow. Front. Med. 7 (2020)","DOI":"10.3389\/fmed.2020.00027"},{"key":"5_CR4","doi-asserted-by":"publisher","unstructured":"Cai, L., Gao, J., Zhao, D.: A review of the application of deep learning in medical image classification and segmentation. Annal. Transl. Med. 8(11), 713\u2013713 (2020). https:\/\/doi.org\/10.21037\/atm.2020.02.44","DOI":"10.21037\/atm.2020.02.44"},{"key":"5_CR5","doi-asserted-by":"publisher","unstructured":"Cao, Y., et al.: Predictive values of preoperative characteristics for 30-day mortality in traumatic hip fracture patients. J. Pers. Med. 11(5), 353 (2021). https:\/\/doi.org\/10.3390\/jpm11050353","DOI":"10.3390\/jpm11050353"},{"key":"5_CR6","doi-asserted-by":"publisher","unstructured":"Chen, H., Lundberg, S.M., Lee, S.I.: Explaining a series of models by propagating Shapley values. Nat. Commun. 13(1), 4512 (2022). https:\/\/doi.org\/10.1038\/s41467-022-31384-3","DOI":"10.1038\/s41467-022-31384-3"},{"key":"5_CR7","unstructured":"Das, A., Rad, P.: Opportunities and challenges in explainable artificial Intelligence (XAI): a survey. arXiv preprint arXiv:2006.11371 (2020)"},{"issue":"2","key":"5_CR8","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1016\/j.injury.2016.12.009","volume":"48","author":"L de Munter","year":"2017","unstructured":"de Munter, L., Polinder, S., Lansink, K.W.W., Cnossen, M.C., Steyerberg, E.W., de Jongh, M.A.C.: Mortality prediction models in the general trauma population: a systematic review. Injury 48(2), 221\u2013229 (2017). https:\/\/doi.org\/10.1016\/j.injury.2016.12.009","journal-title":"Injury"},{"key":"5_CR9","doi-asserted-by":"publisher","unstructured":"Fritz, B.A., et al.: Deep-learning model for predicting 30-day postoperative mortality. Br. J. Anaesth. 123(5), 688\u2013695 (2019). https:\/\/doi.org\/10.1016\/j.bja.2019.07.025","DOI":"10.1016\/j.bja.2019.07.025"},{"key":"5_CR10","doi-asserted-by":"publisher","unstructured":"Gowd, A.K., et al.: Construct validation of machine learning in the prediction of short-term postoperative complications following total shoulder arthroplasty. J. Shoulder Elbow Surg. 28(12), e410\u2013e421 (2019). https:\/\/doi.org\/10.1016\/j.jse.2019.05.017","DOI":"10.1016\/j.jse.2019.05.017"},{"issue":"5","key":"5_CR11","doi-asserted-by":"publisher","first-page":"407","DOI":"10.1007\/PL00004148","volume":"7","author":"B Gullberg","year":"1997","unstructured":"Gullberg, B., Johnell, O., Kanis, J.: World-wide projections for hip fracture. Osteoporos. Int. 7(5), 407\u2013413 (1997). https:\/\/doi.org\/10.1007\/PL00004148","journal-title":"Osteoporos. Int."},{"key":"5_CR12","doi-asserted-by":"publisher","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770\u2013778 (2016).https:\/\/doi.org\/10.1109\/CVPR.2016.90","DOI":"10.1109\/CVPR.2016.90"},{"issue":"6","key":"5_CR13","doi-asserted-by":"publisher","first-page":"676","DOI":"10.1016\/j.injury.2011.05.017","volume":"43","author":"F Hu","year":"2012","unstructured":"Hu, F., Jiang, C., Shen, J., Tang, P., Wang, Y.: Preoperative predictors for mortality following hip fracture surgery: a systematic review and meta-analysis. Injury 43(6), 676\u2013685 (2012). https:\/\/doi.org\/10.1016\/j.injury.2011.05.017","journal-title":"Injury"},{"issue":"2","key":"5_CR14","doi-asserted-by":"publisher","first-page":"149","DOI":"10.1046\/j.1365-2168.1999.01006.x","volume":"86","author":"HJ Jones","year":"1999","unstructured":"Jones, H.J., de Cossart, L.: Risk scoring in surgical patients. Br. J. Surg. 86(2), 149\u2013157 (1999). https:\/\/doi.org\/10.1046\/j.1365-2168.1999.01006.x","journal-title":"Br. J. Surg."},{"key":"5_CR15","doi-asserted-by":"publisher","unstructured":"Junaid, M., Ali, S., Eid, F., El-Sappagh, S., Abuhmed, T.: Explainable machine learning models based on multimodal time-series data for the early detection of Parkinson\u2019s disease. Comput. Methods Prog. Biomed. 234, 10749 (2023). https:\/\/doi.org\/10.1016\/j.cmpb.2023.107495","DOI":"10.1016\/j.cmpb.2023.107495"},{"key":"5_CR16","doi-asserted-by":"publisher","unstructured":"Karim, F., Majumdar, S., Darabi, H.: Insights into LSTM fully convolutional networks for time series classification. IEEE Access 7, 67718\u201367725 (2019). https:\/\/doi.org\/10.1109\/ACCESS.2019.2916828","DOI":"10.1109\/ACCESS.2019.2916828"},{"issue":"1","key":"5_CR17","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1097\/BOT.0000000000001025","volume":"32","author":"J Karres","year":"2018","unstructured":"Karres, J., Kieviet, N., Eerenberg, J.P., Vrouenraets, B.C.: Predicting early mortality after hip fracture surgery: the hip fracture estimator of mortality Amsterdam. J. Orthop. Trauma 32(1), 27\u201333 (2018). https:\/\/doi.org\/10.1097\/BOT.0000000000001025","journal-title":"J. Orthop. Trauma"},{"key":"5_CR18","doi-asserted-by":"publisher","unstructured":"King, G., Zeng, L.: Logistic regression in rare events data. Politic. Anal. 9(2), 137\u2013163 (2001).https:\/\/doi.org\/10.1093\/oxfordjournals.pan.a004868","DOI":"10.1093\/oxfordjournals.pan.a004868"},{"issue":"4","key":"5_CR19","doi-asserted-by":"publisher","first-page":"649","DOI":"10.1097\/ALN.0000000000002186","volume":"129","author":"CK Lee","year":"2018","unstructured":"Lee, C.K., Hofer, I., Gabel, E., Baldi, P., Cannesson, M.: Development and validation of a deep neural network model for prediction of postoperative in-hospital mortality. Anesthesiology 129(4), 649\u2013662 (2018). https:\/\/doi.org\/10.1097\/ALN.0000000000002186","journal-title":"Anesthesiology"},{"key":"5_CR20","unstructured":"Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol.\u00a030. Curran Associates, Inc. (2017)"},{"key":"5_CR21","unstructured":"Nagrani, A., Yang, S., Arnab, A., Jansen, A., Schmid, C., Sun, C.: Attention bottlenecks for multimodal fusion. In: Advances in Neural Information Processing Systems, vol.\u00a034, pp. 14200\u201314213. Curran Associates, Inc. (2021)"},{"issue":"10","key":"5_CR22","doi-asserted-by":"publisher","first-page":"2138","DOI":"10.1016\/j.injury.2016.07.022","volume":"47","author":"WS Nijmeijer","year":"2016","unstructured":"Nijmeijer, W.S., Folbert, E.C., Vermeer, M., Slaets, J.P., Hegeman, J.H.: Prediction of early mortality following hip fracture surgery in frail elderly: the Almelo hip fracture score (AHFS). Injury 47(10), 2138\u20132143 (2016). https:\/\/doi.org\/10.1016\/j.injury.2016.07.022","journal-title":"Injury"},{"key":"5_CR23","doi-asserted-by":"publisher","unstructured":"Pawar, U., O\u2019Shea, D., Rea, S., O\u2019Reilly, R.: Explainable AI in Healthcare. In: 2020 International Conference on Cyber Situational Awareness, Data Analytics and Assessment (CyberSA), pp.\u00a01\u20132 (2020). https:\/\/doi.org\/10.1109\/CyberSA49311.2020.9139655","DOI":"10.1109\/CyberSA49311.2020.9139655"},{"issue":"11","key":"5_CR24","doi-asserted-by":"publisher","first-page":"1906","DOI":"10.3390\/jcm8111906","volume":"8","author":"JW Perng","year":"2019","unstructured":"Perng, J.W., Kao, I.H., Kung, C.T., Hung, S.C., Lai, Y.H., Su, C.M.: Mortality prediction of septic patients in the emergency department based on machine learning. J. Clin. Med. 8(11), 1906 (2019). https:\/\/doi.org\/10.3390\/jcm8111906","journal-title":"J. Clin. Med."},{"key":"5_CR25","doi-asserted-by":"publisher","first-page":"218","DOI":"10.1016\/j.jbi.2017.04.001","volume":"69","author":"T Pham","year":"2017","unstructured":"Pham, T., Tran, T., Phung, D., Venkatesh, S.: Predicting healthcare trajectories from medical records: a deep learning approach. J. Biomed. Inform. 69, 218\u2013229 (2017). https:\/\/doi.org\/10.1016\/j.jbi.2017.04.001","journal-title":"J. Biomed. Inform."},{"key":"5_CR26","doi-asserted-by":"publisher","unstructured":"Ribeiro, M.T., Singh, S., Guestrin, C.: \u201cWhy should I trust you?\u201d: Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), pp. 1135\u20131144. Association for Computing Machinery, New York (2016). https:\/\/doi.org\/10.1145\/2939672.2939778","DOI":"10.1145\/2939672.2939778"},{"key":"5_CR27","doi-asserted-by":"publisher","unstructured":"Schoenfeld, A.J., et al.: Assessing the utility of a clinical prediction score regarding 30-day morbidity and mortality following metastatic spinal surgery: the New England Spinal Metastasis Score (NESMS). The Spine J. 16(4), 482\u2013490 (2016). https:\/\/doi.org\/10.1016\/j.spinee.2015.09.043","DOI":"10.1016\/j.spinee.2015.09.043"},{"key":"5_CR28","doi-asserted-by":"publisher","first-page":"2673","DOI":"10.1109\/78.650093","volume":"45","author":"M Schuster","year":"1997","unstructured":"Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45, 2673\u20132681 (1997). https:\/\/doi.org\/10.1109\/78.650093","journal-title":"IEEE Trans. Signal Process."},{"key":"5_CR29","doi-asserted-by":"crossref","unstructured":"Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618\u2013626 (2017)","DOI":"10.1109\/ICCV.2017.74"},{"key":"5_CR30","unstructured":"Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: International Conference on Machine Learning, pp. 3145\u20133153. PMLR (2017)"},{"key":"5_CR31","unstructured":"Tonekaboni, S., Joshi, S., McCradden, M.D., Goldenberg, A.: What clinicians want: contextualizing explainable machine learning for clinical end use. In: Proceedings of the 4th Machine Learning for Healthcare Conference, pp. 359\u2013380. PMLR (2019)"},{"key":"5_CR32","doi-asserted-by":"publisher","unstructured":"Wang, W., Krishnan, E.: Big data and clinicians: a review on the state of the science. JMIR Med. Inf. 2(1), e1 (2014).https:\/\/doi.org\/10.2196\/medinform.2913","DOI":"10.2196\/medinform.2913"},{"key":"5_CR33","doi-asserted-by":"publisher","unstructured":"Xue, B., et al.: Use of machine learning to develop and evaluate models using preoperative and intraoperative data to identify risks of postoperative complications. JAMA Netw. Open 4(3), e212240 (2021). https:\/\/doi.org\/10.1001\/jamanetworkopen.2021.2240","DOI":"10.1001\/jamanetworkopen.2021.2240"},{"key":"5_CR34","doi-asserted-by":"publisher","unstructured":"Yenidogan, B., Pathak, S., Geerdink, J., Hegeman, J.H., van Keulen, M.: Multimodal machine learning for 30-days post-operative mortality prediction of elderly hip fracture patients. In: 2021 International Conference on Data Mining Workshops (ICDMW), pp. 508\u2013516 (2021).https:\/\/doi.org\/10.1109\/ICDMW53433.2021.00068","DOI":"10.1109\/ICDMW53433.2021.00068"}],"container-title":["Communications in Computer and Information Science","Explainable Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-63803-9_5","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T23:18:08Z","timestamp":1720567088000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-63803-9_5"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031638022","9783031638039"],"references-count":34,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-63803-9_5","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"value":"1865-0929","type":"print"},{"value":"1865-0937","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"10 July 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"Christin Seifert is a member of the XAI 2024 World Conference committee. All other authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"xAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"World Conference on Explainable Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Valletta","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malta","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 July 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 July 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"xai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/xaiworldconference.com\/2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}