{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,28]],"date-time":"2025-03-28T10:11:16Z","timestamp":1743156676778,"version":"3.40.3"},"publisher-location":"Cham","reference-count":46,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031637865"},{"type":"electronic","value":"9783031637872"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-63787-2_8","type":"book-chapter","created":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T23:03:55Z","timestamp":1720566235000},"page":"137-159","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Locally Testing Model Detections for\u00a0Semantic Global Concepts"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0009-0009-4362-7907","authenticated-orcid":false,"given":"Franz","family":"Motzkus","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2494-6285","authenticated-orcid":false,"given":"Georgii","family":"Mikriukov","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5781-6575","authenticated-orcid":false,"given":"Christian","family":"Hellert","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1301-0326","authenticated-orcid":false,"given":"Ute","family":"Schmid","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,7,10]]},"reference":[{"key":"8_CR1","unstructured":"32, I.S.: ISO 26262-1:2018(En): Road Vehicles - Functional Safety - Part 1: Vocabulary (2018). https:\/\/www.iso.org\/standard\/68383.html"},{"key":"8_CR2","doi-asserted-by":"publisher","unstructured":"Achtibat, R., et al.: From attribution maps to human-understandable explanations through concept relevance propagation. Nat. Mach. Intell. 5(9), 1006\u20131019 (2023). https:\/\/doi.org\/10.1038\/s42256-023-00711-8","DOI":"10.1038\/s42256-023-00711-8"},{"key":"8_CR3","unstructured":"Anders, C.J., Neumann, D., Samek, W., M\u00fcller, K.R., Lapuschkin, S.: Software for Dataset-wide XAI: From Local Explanations to Global Insights with Zennit, CoRelAy, and ViRelAy. arXiv preprint arXiv:2106.13200 [cs] (2021)"},{"key":"8_CR4","doi-asserted-by":"publisher","unstructured":"Anders, C.J., Weber, L., Neumann, D., Samek, W., M\u00fcller, K.R., Lapuschkin, S.: Finding and removing Clever Hans: using explanation methods to debug and improve deep models. Inf. Fusion 77, 261\u2013295 (2022). https:\/\/doi.org\/10.1016\/j.inffus.2021.07.015","DOI":"10.1016\/j.inffus.2021.07.015"},{"key":"8_CR5","doi-asserted-by":"publisher","unstructured":"Arras, L., Osman, A., Samek, W.: CLEVR-XAI: a benchmark dataset for the ground truth evaluation of neural network explanations. Inf. Fusion 81, 14\u201340 (2022). https:\/\/doi.org\/10.1016\/j.inffus.2021.11.008","DOI":"10.1016\/j.inffus.2021.11.008"},{"key":"8_CR6","doi-asserted-by":"publisher","unstructured":"Bach, S., Binder, A., Montavon, G., Klauschen, F., M\u00fcller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE 10(7), e0130 (2015). https:\/\/doi.org\/10.1371\/journal.pone.0130140","DOI":"10.1371\/journal.pone.0130140"},{"key":"8_CR7","first-page":"1803","volume":"11","author":"D Baehrens","year":"2010","unstructured":"Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., M\u00fcller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803\u20131831 (2010)","journal-title":"J. Mach. Learn. Res."},{"key":"8_CR8","doi-asserted-by":"publisher","unstructured":"Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3319\u20133327 (2017). https:\/\/doi.org\/10.1109\/CVPR.2017.354","DOI":"10.1109\/CVPR.2017.354"},{"key":"8_CR9","doi-asserted-by":"publisher","unstructured":"Brocki, L., Chung, N.C.: Concept saliency maps to visualize relevant features in deep generative models. In: 2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1771\u20131778 (2019). https:\/\/doi.org\/10.1109\/ICMLA.2019.00287","DOI":"10.1109\/ICMLA.2019.00287"},{"key":"8_CR10","unstructured":"Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep learning for interpretable image recognition. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alch\u00e9-Buc, F.D., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)"},{"issue":"12","key":"8_CR11","doi-asserted-by":"publisher","first-page":"772","DOI":"10.1038\/s42256-020-00265-z","volume":"2","author":"Z Chen","year":"2020","unstructured":"Chen, Z., Bei, Y., Rudin, C.: Concept whitening for interpretable image recognition. Nat. Mach. Intell. 2(12), 772\u2013782 (2020). https:\/\/doi.org\/10.1038\/s42256-020-00265-z","journal-title":"Nat. Mach. Intell."},{"key":"8_CR12","unstructured":"Chormai, P., Herrmann, J., M\u00fcller, K.R., Montavon, G.: Disentangled Explanations of Neural Network Predictions by Finding Relevant Subspaces. arXiv preprint arXiv:2212.14855 [cs] (2022)"},{"key":"8_CR13","doi-asserted-by":"publisher","unstructured":"Combi, C., et al.: A manifesto on explainability for artificial intelligence in medicine. Artif. Intell. Med. 133, 102423 (2022). https:\/\/doi.org\/10.1016\/j.artmed.2022.102423","DOI":"10.1016\/j.artmed.2022.102423"},{"key":"8_CR14","unstructured":"Crabb\u00e9, J., van\u00a0der Schaar, M.: Concept Activation Regions: A Generalized Framework For Concept-Based Explanations. arXiv:2209.11222 [cs] (2022)"},{"key":"8_CR15","doi-asserted-by":"crossref","unstructured":"Dreyer, M., Achtibat, R., Wiegand, T., Samek, W., Lapuschkin, S.: Revealing Hidden Context Bias in Segmentation and Object Detection through Concept-specific Explanations. arXiv:2211.11426 [cs] (2022)","DOI":"10.1109\/CVPRW59228.2023.00397"},{"key":"8_CR16","doi-asserted-by":"crossref","unstructured":"Fong, R., Vedaldi, A.: Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks. arXiv:1801.03454 [cs, stat] (2018)","DOI":"10.1109\/CVPR.2018.00910"},{"key":"8_CR17","unstructured":"Ghorbani, A., Wexler, J., Zou, J.Y., Kim, B.: Towards automatic concept-based explanations. In: Wallach, H., Larochelle, H., Beygelzimer, A., Alch\u00e9-Buc, F.D., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)"},{"issue":"3","key":"8_CR18","doi-asserted-by":"publisher","first-page":"50","DOI":"10.1609\/aimag.v38i3.2741","volume":"38","author":"B Goodman","year":"2017","unstructured":"Goodman, B., Flaxman, S.: European Union regulations on algorithmic decision-making and a \u201cRight to Explanation\u2019\u2019. AI Magazine 38(3), 50\u201357 (2017). https:\/\/doi.org\/10.1609\/aimag.v38i3.2741","journal-title":"AI Magazine"},{"key":"8_CR19","doi-asserted-by":"publisher","unstructured":"He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770\u2013778 (2016). https:\/\/doi.org\/10.1109\/CVPR.2016.90","DOI":"10.1109\/CVPR.2016.90"},{"key":"8_CR20","unstructured":"Hedstr\u00f6m, A., et al.: Quantus: an explainable AI toolkit for responsible evaluation of neural network explanations and beyond. J. Mach. Learn. Res. 24(34) (2023)"},{"key":"8_CR21","doi-asserted-by":"publisher","unstructured":"Holzinger, A., Saranti, A., Molnar, C., Biecek, P., Samek, W.: Explainable AI methods - a brief overview. In: Holzinger, A., Goebel, R., Fong, R., Moon, T., M\u00fcller, K.-R., Samek, W. (eds.) xxAI - Beyond Explainable AI: International Workshop, ICML 2020, pp. 13\u201338. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-04083-2_2","DOI":"10.1007\/978-3-031-04083-2_2"},{"key":"8_CR22","doi-asserted-by":"publisher","unstructured":"Karasmanoglou, A., Antonakakis, M., Zervakis, M.: Heatmap-based explanation of YOLOv5 Object detection with layer-wise relevance propagation. In: 2022 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, Kaohsiung (2022). https:\/\/doi.org\/10.1109\/IST55454.2022.9827744","DOI":"10.1109\/IST55454.2022.9827744"},{"key":"8_CR23","unstructured":"Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on Machine Learning, vol.\u00a080, pp. 2668\u20132677. PMLR (2018)"},{"key":"8_CR24","doi-asserted-by":"publisher","unstructured":"Kohlbrenner, M., Bauer, A., Nakajima, S., Binder, A., Samek, W., Lapuschkin, S.: Towards best practice in explaining neural network decisions with LRP. In: 2020 International Joint Conference on Neural Networks (IJCNN) (2020). https:\/\/doi.org\/10.1109\/IJCNN48605.2020.9206975","DOI":"10.1109\/IJCNN48605.2020.9206975"},{"key":"8_CR25","unstructured":"Leemann, T., Kirchhof, M., Rong, Y., Kasneci, E., Kasneci, G.: When are Post-hoc Conceptual Explanantions Identifiable? arXiv:2206.13872 [cs, stat] (2023)"},{"key":"8_CR26","doi-asserted-by":"crossref","unstructured":"Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 740\u2013755. Springer, Cham (2014)","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"8_CR27","unstructured":"Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017)"},{"key":"8_CR28","doi-asserted-by":"publisher","unstructured":"Graziani, M., Andrearczyk, V., Marchand-Maillet, S., M\u00fcller, H.: Concept attribution: explaining CNN decisions to physicians. Comput. Biol. Med. 123, 103865 (2020). https:\/\/doi.org\/10.1016\/j.compbiomed.2020.103865","DOI":"10.1016\/j.compbiomed.2020.103865"},{"key":"8_CR29","doi-asserted-by":"publisher","unstructured":"Motzkus, F., Weber, L., Lapuschkin, S.: Measurably stronger explanation reliability via model canonization. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 516\u2013520 (2022). https:\/\/doi.org\/10.1109\/ICIP46576.2022.9897282","DOI":"10.1109\/ICIP46576.2022.9897282"},{"key":"8_CR30","unstructured":"Pahde, F., Weber, L., Anders, C.J., Samek, W., Lapuschkin, S.: PatClArC: Using Pattern Concept Activation Vectors for Noise-Robust Model Debugging. arXiv preprint arXiv:2202.03482 [cs] (2022)"},{"key":"8_CR31","doi-asserted-by":"publisher","unstructured":"Pahde, F., Yolcu, G., Binder, A., Samek, W., Lapuschkin, S.: Optimizing explanations by network canonization and hyperparameter search. In: 2023 IEEE\/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 3819\u20133828. IEEE, Vancouver (2023). https:\/\/doi.org\/10.1109\/CVPRW59228.2023.00396","DOI":"10.1109\/CVPRW59228.2023.00396"},{"key":"8_CR32","doi-asserted-by":"publisher","unstructured":"Ribeiro, M.T., Singh, S., Guestrin, C.: \"Why should I trust you?\": explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), pp. 1135\u20131144. Association for Computing Machinery, New York (2016). https:\/\/doi.org\/10.1145\/2939672.2939778. event-place: San Francisco, California, USA","DOI":"10.1145\/2939672.2939778"},{"issue":"11","key":"8_CR33","doi-asserted-by":"publisher","first-page":"2660","DOI":"10.1109\/TNNLS.2016.2599820","volume":"28","author":"W Samek","year":"2017","unstructured":"Samek, W., Binder, A., Montavon, G., Lapuschkin, S., M\u00fcller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660\u20132673 (2017). https:\/\/doi.org\/10.1109\/TNNLS.2016.2599820","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"8_CR34","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-022-00867-8","author":"G Schwalbe","year":"2023","unstructured":"Schwalbe, G., Finzel, B.: A comprehensive taxonomy for explainable artificial intelligence: a systematic survey of surveys on methods and concepts. Data Min. Knowl. Disc. (2023). https:\/\/doi.org\/10.1007\/s10618-022-00867-8","journal-title":"Data Min. Knowl. Disc."},{"key":"8_CR35","doi-asserted-by":"publisher","unstructured":"Schwalbe, G., et al.: Structuring the safety argumentation for deep neural network based perception in automotive applications. In: Casimiro, A., Ortmeier, F., Schoitsch, E., Bitsch, F., Ferreira, P. (eds.) SAFECOMP 2020. LNCS, vol. 12235, pp. 383\u2013394. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-55583-2_29","DOI":"10.1007\/978-3-030-55583-2_29"},{"issue":"2","key":"8_CR36","doi-asserted-by":"publisher","first-page":"336","DOI":"10.1007\/s11263-019-01228-7","volume":"128","author":"RR Selvaraju","year":"2020","unstructured":"Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision 128(2), 336\u2013359 (2020). https:\/\/doi.org\/10.1007\/s11263-019-01228-7","journal-title":"Int. J. Comput. Vision"},{"key":"8_CR37","unstructured":"Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning, vol.\u00a070, pp. 3145\u20133153. PMLR (2017)"},{"key":"8_CR38","unstructured":"Simonyan, K., Vedaldi, A., Zisserman, A.: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps. arXiv preprint arXiv:1312.6034 [cs] (2014)"},{"key":"8_CR39","unstructured":"Smilkov, D., Thorat, N., Kim, B., Vi\u00e9gas, F., Wattenberg, M.: SmoothGrad: Removing Noise by Adding Noise. arXiv preprint arXiv:1706.03825 [cs, stat] (2017)"},{"key":"8_CR40","unstructured":"Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol.\u00a070, pp. 3319\u20133328. PMLR (2017)"},{"key":"8_CR41","unstructured":"Thomas, F., et al.: Craft: concept recursive activation factorization for explainability. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2023)"},{"key":"8_CR42","unstructured":"Vielhaben, J., Bl\u00fccher, S., Strodthoff, N.: Multi-dimensional Concept Discovery (MCD): A Unifying Framework with Completeness Guarantees. arXiv preprint arXiv:2301.11911 [cs, stat] (2023)"},{"key":"8_CR43","doi-asserted-by":"publisher","first-page":"154","DOI":"10.1016\/j.inffus.2022.11.013","volume":"92","author":"L Weber","year":"2023","unstructured":"Weber, L., Lapuschkin, S., Binder, A., Samek, W.: Beyond explaining: opportunities and challenges of XAI-based model improvement. Inf. Fusion 92, 154\u2013176 (2023). https:\/\/doi.org\/10.1016\/j.inffus.2022.11.013","journal-title":"Inf. Fusion"},{"key":"8_CR44","doi-asserted-by":"publisher","unstructured":"Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818\u2013833. Springer, Cham (2014). https:\/\/doi.org\/10.1007\/978-3-319-10590-1_53","DOI":"10.1007\/978-3-319-10590-1_53"},{"issue":"13","key":"8_CR45","doi-asserted-by":"publisher","first-page":"11682","DOI":"10.1609\/aaai.v35i13.17389","volume":"35","author":"R Zhang","year":"2021","unstructured":"Zhang, R., Madumal, P., Miller, T., Ehinger, K.A., Rubinstein, B.I.P.: Invertible concept-based explanations for CNN models with non-negative concept activation vectors. Proc. AAAI Conf. Artif. Intell. 35(13), 11682\u201311690 (2021). https:\/\/doi.org\/10.1609\/aaai.v35i13.17389","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"key":"8_CR46","doi-asserted-by":"publisher","unstructured":"Zhou, B., Sun, Y., Bau, D., Torralba, A.: Interpretable basis decomposition for visual explanation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 122\u2013138. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01237-3_8","DOI":"10.1007\/978-3-030-01237-3_8"}],"container-title":["Communications in Computer and Information Science","Explainable Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-63787-2_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T23:05:09Z","timestamp":1720566309000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-63787-2_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031637865","9783031637872"],"references-count":46,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-63787-2_8","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"10 July 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests."}},{"value":"xAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"World Conference on Explainable Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Valletta","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malta","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 July 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 July 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"xai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/xaiworldconference.com\/2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}