{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,10]],"date-time":"2024-07-10T00:28:47Z","timestamp":1720571327050},"publisher-location":"Cham","reference-count":53,"publisher":"Springer Nature Switzerland","isbn-type":[{"value":"9783031637865","type":"print"},{"value":"9783031637872","type":"electronic"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-63787-2_15","type":"book-chapter","created":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T23:03:55Z","timestamp":1720566235000},"page":"287-307","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Benchmarking Trust: A Metric for\u00a0Trustworthy Machine Learning"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6907-9296","authenticated-orcid":false,"given":"J\u00e9r\u00f4me","family":"Rutinowski","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9698-4339","authenticated-orcid":false,"given":"Simon","family":"Kl\u00fcttermann","sequence":"additional","affiliation":[]},{"given":"Jan","family":"Endendyk","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4915-4070","authenticated-orcid":false,"given":"Christopher","family":"Reining","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5409-6875","authenticated-orcid":false,"given":"Emmanuel","family":"M\u00fcller","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,7,10]]},"reference":[{"key":"15_CR1","doi-asserted-by":"publisher","first-page":"82","DOI":"10.1016\/j.inffus.2019.12.012","volume":"58","author":"AB Arrieta","year":"2020","unstructured":"Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82\u2013115 (2020)","journal-title":"Inf. Fusion"},{"key":"15_CR2","unstructured":"Ashoori, M., Weisz, J.D.: In AI we trust? Factors that influence trustworthiness of AI-infused decision-making processes. arXiv preprint arXiv:1912.02675 (2019)"},{"issue":"5","key":"15_CR3","doi-asserted-by":"publisher","first-page":"609","DOI":"10.1016\/0305-0483(76)90011-6","volume":"4","author":"RH Ashton","year":"1976","unstructured":"Ashton, R.H.: The robustness of linear models for decision-making. Omega 4(5), 609\u2013615 (1976)","journal-title":"Omega"},{"key":"15_CR4","doi-asserted-by":"crossref","unstructured":"Auer, P., Holte, R.C., Maass, W.: Theory and applications of agnostic PAC-learning with small decision trees. In: Machine Learning Proceedings 1995, pp. 21\u201329 (1995)","DOI":"10.1016\/B978-1-55860-377-6.50012-8"},{"key":"15_CR5","unstructured":"Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877\u20131901 (2020)"},{"key":"15_CR6","doi-asserted-by":"publisher","first-page":"245","DOI":"10.1613\/jair.1.12228","volume":"70","author":"N Burkart","year":"2021","unstructured":"Burkart, N., Huber, M.F.: A survey on the explainability of supervised machine learning. J. Artif. Intell. Res. 70, 245\u2013317 (2021)","journal-title":"J. Artif. Intell. Res."},{"key":"15_CR7","unstructured":"Caton, S., Haas, C.: Fairness in machine learning: a survey. ACM Comput. Surv. (2020)"},{"key":"15_CR8","unstructured":"Dalenius, T.: Towards a Methodology for Statistical Disclosure Control. Statistics, Sweden (1977)"},{"key":"15_CR9","unstructured":"Darestani, M.Z., Chaudhari, A.S., Heckel, R.: Measuring robustness in deep learning based compressive sensing. In: International Conference on Machine Learning, pp. 2433\u20132444. PMLR (2021)"},{"key":"15_CR10","unstructured":"De\u00a0Cristofaro, E.: An overview of privacy in machine learning. arXiv preprint arXiv:2005.08679 (2020)"},{"key":"15_CR11","doi-asserted-by":"crossref","unstructured":"Dodge, J., Liao, Q.V., Zhang, Y., Bellamy, R.K.E., Dugan, C.: Explaining models: an empirical study of how explanations impact fairness judgment. In: 24th International Conference on Intelligent User Interfaces, pp. 275\u2013285 (2019)","DOI":"10.1145\/3301275.3302310"},{"key":"15_CR12","unstructured":"Drenkow, N., Sani, N., Shpitser, I., Unberath, M.: A systematic review of robustness in deep learning for computer vision: mind the gap? arXiv preprint arXiv:2112.00639 (2021)"},{"key":"15_CR13","unstructured":"European Commission: Regulation (EU) 2016\/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95\/46\/EC (General Data Protection Regulation) (2016). https:\/\/eur-lex.europa.eu\/eli\/reg\/2016\/679\/oj"},{"key":"15_CR14","unstructured":"European Commission: Amendments adopted by the European parliament on 14 June 2023 on the proposal for a regulation of the European parliament and of the council on laying down Harmonised rules on artificial intelligence (artificial intelligence act) (2023). https:\/\/eur-lex.europa.eu\/legal-content\/EN\/TXT\/?uri=OJ:C_202400506"},{"issue":"7","key":"15_CR15","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1145\/3134599","volume":"61","author":"I Goodfellow","year":"2018","unstructured":"Goodfellow, I., McDaniel, P., Papernot, N.: Making machine learning robust against adversarial inputs. Commun. ACM 61(7), 56\u201366 (2018)","journal-title":"Commun. ACM"},{"issue":"5","key":"15_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3236009","volume":"51","author":"R Guidotti","year":"2018","unstructured":"Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. 51(5), 1\u201342 (2018)","journal-title":"ACM Comput. Surv."},{"issue":"2","key":"15_CR17","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1007\/BF00196791","volume":"3","author":"S Haber","year":"1991","unstructured":"Haber, S., Stornetta, W.S.: How to time-stamp a digital document. J. Cryptol. 3(2), 99\u2013111 (1991)","journal-title":"J. Cryptol."},{"key":"15_CR18","unstructured":"Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)"},{"key":"15_CR19","unstructured":"He, Z., Zhang, T., Lee, R.B.: VeriDeep: verifying integrity of deep neural networks through sensitive-sample fingerprinting. arXiv preprint arXiv:1808.03277 (2018)"},{"key":"15_CR20","doi-asserted-by":"crossref","unstructured":"Herm, L.V., Heinrich, K., Wanner, J., Janiesch, C.: Stop ordering machine learning algorithms by their explainability! A user-centered investigation of performance and explainability. Int. J. Inf. Manag. 69 (2023)","DOI":"10.1016\/j.ijinfomgt.2022.102538"},{"key":"15_CR21","doi-asserted-by":"publisher","first-page":"255","DOI":"10.1016\/j.ins.2022.04.003","volume":"601","author":"R Hou","year":"2022","unstructured":"Hou, R., Ai, S., Chen, Q., Yan, H., Huang, T., Chen, K.: Similarity-based integrity protection for deep learning systems. Inf. Sci. 601, 255\u2013267 (2022)","journal-title":"Inf. Sci."},{"key":"15_CR22","unstructured":"Ji, Z., Lipton, Z.C., Elkan, C.: Differential privacy and machine learning: a survey and review. arXiv preprint arXiv:1412.7584 (2014)"},{"key":"15_CR23","unstructured":"Kusner, M.J., Loftus, J., Russell, C., Silva, R.: Counterfactual fairness. In: Advances in Neural Information Processing Systems, vol. 30 (2017)"},{"key":"15_CR24","doi-asserted-by":"crossref","unstructured":"Kuttichira, D.P., Gupta, S., Nguyen, D., Rana, S., Venkatesh, S.: Verification of integrity of deployed deep learning models using Bayesian optimization. Knowl.-Based Syst. 241 (2022)","DOI":"10.1016\/j.knosys.2022.108238"},{"key":"15_CR25","doi-asserted-by":"crossref","unstructured":"Li, B., et al.: Trustworthy AI: from principles to practices. ACM Comput. Surv. (2023)","DOI":"10.1145\/3555803"},{"key":"15_CR26","doi-asserted-by":"crossref","unstructured":"Liu, J., Wang, D., Lin, Q., Deng, M.: Risk assessment based on FMEA combining DEA and cloud model: a case application in robot-assisted rehabilitation. Expert Syst. Appl. 214 (2023)","DOI":"10.1016\/j.eswa.2022.119119"},{"key":"15_CR27","doi-asserted-by":"crossref","unstructured":"Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: IEEE International Conference on Computer Vision (ICCV), pp. 3730\u20133738 (2015)","DOI":"10.1109\/ICCV.2015.425"},{"issue":"5","key":"15_CR28","doi-asserted-by":"publisher","first-page":"44","DOI":"10.1109\/MSEC.2022.3178187","volume":"20","author":"M Strobel","year":"2022","unstructured":"Strobel, M., Shokri, R.: Data privacy and trustworthy machine learning. IEEE Secur. Priv. 20(5), 44\u201349 (2022)","journal-title":"IEEE Secur. Priv."},{"key":"15_CR29","unstructured":"Marcinkevi\u010ds, R., Vogt, J.E.: Interpretability and explainability: a machine learning zoo mini-tour. arXiv preprint arXiv:2012.01805 (2020)"},{"key":"15_CR30","unstructured":"Mayring, P.: Qualitative content analysis. In: A Companion to Qualitative Research, vol. 1, no. 2, pp. 159\u2013176 (2004)"},{"key":"15_CR31","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"54","DOI":"10.1007\/978-3-030-50334-5_4","volume-title":"Artificial Intelligence in HCI","author":"C Meske","year":"2020","unstructured":"Meske, C., Bunde, E.: Transparency and trust in human-AI-interaction: the role of model-agnostic explanations in computer vision-based decision support. In: Degen, H., Reinerman-Jones, L. (eds.) HCII 2020. LNCS, vol. 12217, pp. 54\u201369. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-50334-5_4"},{"key":"15_CR32","unstructured":"Mitchell, T.M.: The need for biases in learning generalizations. Rutgers University (1980)"},{"key":"15_CR33","doi-asserted-by":"crossref","unstructured":"Mohseni, S., Wang, H., Xiao, C., Yu, Z., Wang, Z., Yadawa, J.: Taxonomy of machine learning safety: a survey and primer. ACM Comput. Surv. (2022)","DOI":"10.1145\/3551385"},{"key":"15_CR34","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.dsp.2017.10.011","volume":"73","author":"G Montavon","year":"2018","unstructured":"Montavon, G., Samek, W., M\u00fcller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Sig. Process. 73, 1\u201315 (2018)","journal-title":"Digit. Sig. Process."},{"key":"15_CR35","doi-asserted-by":"crossref","unstructured":"Niemann, F., et al.: LARa: creating a dataset for human activity recognition in logistics using semantic attributes. MDPI Sens. 20(15) (2020)","DOI":"10.3390\/s20154083"},{"key":"15_CR36","doi-asserted-by":"crossref","unstructured":"Papernot, N., McDaniel, P., Sinha, A., Wellman, M.P.: SoK: security and privacy in machine learning. In: IEEE European Symposium on Security and Privacy (EuroS &P), pp. 399\u2013414 (2018)","DOI":"10.1109\/EuroSP.2018.00035"},{"key":"15_CR37","unstructured":"Peng, K., Mathur, A., Narayanan, A.: Mitigating dataset harms requires stewardship: lessons from 1000 papers. In: NeurIPS 2021 Datasets and Benchmarks Track (2021)"},{"key":"15_CR38","unstructured":"Rauber, J., Brendel, W., Bethge, M.: Foolbox: a Python toolbox to benchmark the robustness of machine learning models. arXiv preprint arXiv:1707.04131 (2017)"},{"key":"15_CR39","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779\u2013788 (2016)","DOI":"10.1109\/CVPR.2016.91"},{"key":"15_CR40","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"17","DOI":"10.1007\/978-3-319-48881-3_2","volume-title":"Computer Vision \u2013 ECCV 2016 Workshops","author":"E Ristani","year":"2016","unstructured":"Ristani, E., Solera, F., Zou, R., Cucchiara, R., Tomasi, C.: Performance measures and a data set for\u00a0multi-target, multi-camera tracking. In: Hua, G., J\u00e9gou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 17\u201335. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-48881-3_2"},{"key":"15_CR41","doi-asserted-by":"crossref","unstructured":"Rutinowski, J., Franke, S., Endendyk, J., Dormuth, I., Roidl, M., Pauly, M.: The self-perception and political biases of ChatGPT. Hum. Behav. Emerg. Technol. (2024)","DOI":"10.1155\/2024\/7115633"},{"issue":"9","key":"15_CR42","doi-asserted-by":"publisher","first-page":"793","DOI":"10.1515\/auto-2022-0012","volume":"70","author":"A Schmitz","year":"2022","unstructured":"Schmitz, A., Akila, M., Hecker, D., Poretschkin, M., Wrobel, S.: An approach for systematic quality assurance when working with ML components. AT - Automatisierungstechnik 70(9), 793\u2013804 (2022)","journal-title":"AT - Automatisierungstechnik"},{"key":"15_CR43","unstructured":"Song, L., Mittal, P.: Systematic evaluation of privacy risks of machine learning models. In: 30th USENIX Security Symposium, pp. 2615\u20132632 (2021)"},{"key":"15_CR44","unstructured":"Stamatis, D.H.: Risk Management Using Failure Mode and Effect Analysis (FMEA). Quality Press (2019)"},{"key":"15_CR45","doi-asserted-by":"crossref","unstructured":"Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.\u00a01\u20139 (2015)","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"15_CR46","doi-asserted-by":"publisher","first-page":"447","DOI":"10.1007\/s12525-020-00441-4","volume":"31","author":"S Thiebes","year":"2021","unstructured":"Thiebes, S., Lins, S., Sunyaev, A.: Trustworthy artificial intelligence. Electron. Mark. 31, 447\u2013464 (2021)","journal-title":"Electron. Mark."},{"issue":"1","key":"15_CR47","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1109\/MIS.2022.3152946","volume":"37","author":"B Thuraisingham","year":"2022","unstructured":"Thuraisingham, B.: Trustworthy machine learning. IEEE Intell. Syst. 37(1), 21\u201324 (2022)","journal-title":"IEEE Intell. Syst."},{"key":"15_CR48","doi-asserted-by":"crossref","unstructured":"Toreini, E., Aitken, M., Coopamootoo, K., Elliott, K., Zelaya, C.G., van Moorsel, A.: The relationship between trust in AI and trustworthy machine learning technologies. In: ACM Conference on Fairness, Accountability, and Transparency (FaccT), pp. 272\u2013283 (2020)","DOI":"10.1145\/3351095.3372834"},{"issue":"1","key":"15_CR49","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/sdata.2016.18","volume":"3","author":"MD Wilkinson","year":"2016","unstructured":"Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3(1), 1\u20139 (2016)","journal-title":"Sci. Data"},{"issue":"10","key":"15_CR50","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1145\/3448248","volume":"64","author":"JM Wing","year":"2021","unstructured":"Wing, J.M.: Trustworthy AI. Commun. ACM 64(10), 64\u201371 (2021)","journal-title":"Commun. ACM"},{"key":"15_CR51","doi-asserted-by":"crossref","unstructured":"Wischnewski, M., Kr\u00e4mer, N., M\u00fcller, E.: Measuring and understanding trust calibrations for automated systems: a survey of the state-of-the-art and future directions. In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (2023)","DOI":"10.1145\/3544548.3581197"},{"key":"15_CR52","doi-asserted-by":"publisher","first-page":"69","DOI":"10.1016\/j.aiopen.2021.05.002","volume":"2","author":"J Xu","year":"2021","unstructured":"Xu, J., Chen, J., You, S., Xiao, Z., Yang, Y., Lu, J.: Robustness of deep learning models on graphs: a survey. AI Open 2, 69\u201378 (2021)","journal-title":"AI Open"},{"key":"15_CR53","unstructured":"Zemel, R., Wu, Y., Swersky, K., Pitassi, T., Dwork, C.: Learning fair representations. In: 30th International Conference on Machine Learning (ICML), vol.\u00a028, pp. 325\u2013333 (2013)"}],"container-title":["Communications in Computer and Information Science","Explainable Artificial Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-63787-2_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T23:07:20Z","timestamp":1720566440000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-63787-2_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031637865","9783031637872"],"references-count":53,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-63787-2_15","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"value":"1865-0929","type":"print"},{"value":"1865-0937","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"10 July 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"xAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"World Conference on Explainable Artificial Intelligence","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Valletta","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malta","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"17 July 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"19 July 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"xai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/xaiworldconference.com\/2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}