{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T21:43:34Z","timestamp":1726263814725},"publisher-location":"Cham","reference-count":15,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031637858"},{"type":"electronic","value":"9783031637834"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-63783-4_21","type":"book-chapter","created":{"date-parts":[[2024,6,28]],"date-time":"2024-06-28T10:02:35Z","timestamp":1719568955000},"page":"280-294","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Fragmented Image Classification Using Local and\u00a0Global Neural Networks: Investigating the\u00a0Impact of\u00a0the\u00a0Quantity of\u00a0Artificial Objects on\u00a0Model Performance"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2226-9097","authenticated-orcid":false,"given":"Kwabena Frimpong","family":"Marfo","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0616-9694","authenticated-orcid":false,"given":"Ma\u0142gorzata","family":"Przyby\u0142a-Kasperek","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8704-8925","authenticated-orcid":false,"given":"Piotr","family":"Sulikowski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,29]]},"reference":[{"key":"21_CR1","doi-asserted-by":"publisher","first-page":"593","DOI":"10.1016\/j.ins.2021.10.005","volume":"582","author":"FZ Canal","year":"2022","unstructured":"Canal, F.Z., et al.: A survey on facial emotion recognition techniques: a state-of-the-art literature review. Inf. Sci. 582, 593\u2013617 (2022)","journal-title":"Inf. Sci."},{"key":"21_CR2","doi-asserted-by":"publisher","first-page":"639","DOI":"10.1016\/j.ijleo.2018.12.107","volume":"181","author":"J Chaki","year":"2019","unstructured":"Chaki, J., Dey, N., Moraru, L., Shi, F.: Fragmented plant leaf recognition: bag-of-features, fuzzy-color and edge-texture histogram descriptors with multi-layer perceptron. Optik 181, 639\u2013650 (2019)","journal-title":"Optik"},{"key":"21_CR3","doi-asserted-by":"publisher","first-page":"105393","DOI":"10.1016\/j.compag.2020.105393","volume":"173","author":"J Chen","year":"2020","unstructured":"Chen, J., Chen, J., Zhang, D., Sun, Y., Nanehkaran, Y.A.: Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric. 173, 105393 (2020)","journal-title":"Comput. Electron. Agric."},{"key":"21_CR4","doi-asserted-by":"publisher","first-page":"321","DOI":"10.1613\/jair.953","volume":"16","author":"NV Chawla","year":"2002","unstructured":"Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321\u2013357 (2002)","journal-title":"J. Artif. Intell. Res."},{"key":"21_CR5","doi-asserted-by":"publisher","first-page":"102125","DOI":"10.1016\/j.media.2021.102125","volume":"72","author":"E \u00c7alli","year":"2021","unstructured":"\u00c7alli, E., Sogancioglu, E., van Ginneken, B., van Leeuwen, K.G., Murphy, K.: Deep learning for chest X-ray analysis: a survey. Med. Image Anal. 72, 102125 (2021)","journal-title":"Med. Image Anal."},{"key":"21_CR6","unstructured":"Dua, D., Graff, C.: UCI Machine Learning Repository. http:\/\/archive.ics.uci.edu\/ml. University of California, School of Information and Computer Science, Irvine, CA (2019)"},{"issue":"11","key":"21_CR7","doi-asserted-by":"publisher","first-page":"2074","DOI":"10.1016\/j.patcog.2005.03.014","volume":"38","author":"M Fornasier","year":"2005","unstructured":"Fornasier, M., Toniolo, D.: Fast, robust and efficient 2D pattern recognition for re-assembling fragmented images. Pattern Recogn. 38(11), 2074\u20132087 (2005)","journal-title":"Pattern Recogn."},{"key":"21_CR8","doi-asserted-by":"publisher","first-page":"105507","DOI":"10.1016\/j.compag.2020.105507","volume":"174","author":"M Koklu","year":"2020","unstructured":"Koklu, M., Ozkan, I.A.: Multiclass classification of dry beans using computer vision and machine learning techniques. Comput. Electron. Agric. 174, 105507 (2020)","journal-title":"Comput. Electron. Agric."},{"key":"21_CR9","doi-asserted-by":"publisher","first-page":"160","DOI":"10.1007\/s11119-019-09662-w","volume":"21","author":"G Lin","year":"2020","unstructured":"Lin, G., Tang, Y., Zou, X., Cheng, J., Xiong, J.: Fruit detection in natural environment using partial shape matching and probabilistic Hough transform. Precision Agric. 21, 160\u2013177 (2020)","journal-title":"Precision Agric."},{"key":"21_CR10","doi-asserted-by":"publisher","unstructured":"Marfo, K.F., Przyby\u0142a-Kasperek, M.: Radial basis function neural network with a centers training stage for prediction based on dispersed image data. In: Miky\u0161ka, J., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds.) Computational Science \u2013 ICCS 2023. ICCS 2023. LNCS, vol. 10476, pp. 89\u2013103. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-36027-5_7","DOI":"10.1007\/978-3-031-36027-5_7"},{"issue":"6","key":"21_CR11","doi-asserted-by":"publisher","first-page":"569","DOI":"10.1007\/s11055-009-9171-1","volume":"39","author":"YE Shelepin","year":"2009","unstructured":"Shelepin, Y.E., Chikhman, V.N., Foreman, N.: Analysis of the studies of the perception of fragmented images: global description and perception using local features. Neurosci. Behav. Physiol. 39(6), 569\u2013580 (2009)","journal-title":"Neurosci. Behav. Physiol."},{"key":"21_CR12","unstructured":"Siebert, J.P.: Vehicle Recognition Using Rule Based Methods, Turing Institute Research Memorandum TIRM-87-0.18, March 1987"},{"key":"21_CR13","doi-asserted-by":"crossref","unstructured":"Vashist, P.C., Pandey, A., Tripathi, A.: A comparative study of handwriting recognition techniques. In: 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM), pp. 456\u2013461. IEEE, January 2020","DOI":"10.1109\/ICCAKM46823.2020.9051464"},{"issue":"1","key":"21_CR14","doi-asserted-by":"publisher","first-page":"04014118","DOI":"10.1061\/(ASCE)CP.1943-5487.0000451","volume":"30","author":"L Wu","year":"2016","unstructured":"Wu, L., Mokhtari, S., Nazef, A., Nam, B., Yun, H.B.: Improvement of crack-detection accuracy using a novel crack defragmentation technique in image-based road assessment. J. Comput. Civ. Eng. 30(1), 04014118 (2016)","journal-title":"J. Comput. Civ. Eng."},{"key":"21_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13640-019-0417-8","volume":"2019","author":"M Xin","year":"2019","unstructured":"Xin, M., Wang, Y.: Research on image classification model based on deep convolution neural network. EURASIP J. Image Video Process. 2019, 1\u201311 (2019)","journal-title":"EURASIP J. Image Video Process."}],"container-title":["Lecture Notes in Computer Science","Computational Science \u2013 ICCS 2024"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-63783-4_21","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,28]],"date-time":"2024-06-28T10:06:04Z","timestamp":1719569164000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-63783-4_21"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031637858","9783031637834"],"references-count":15,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-63783-4_21","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"29 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCS","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Computational Science","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Malaga","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Spain","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2 July 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccs-computsci2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/www.iccs-meeting.org\/iccs2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}