{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T09:55:16Z","timestamp":1742982916235,"version":"3.40.3"},"publisher-location":"Cham","reference-count":41,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031636455"},{"type":"electronic","value":"9783031636462"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-63646-2_14","type":"book-chapter","created":{"date-parts":[[2024,6,23]],"date-time":"2024-06-23T23:02:13Z","timestamp":1719183733000},"page":"206-222","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Explaining Multiple Instances Counterfactually:User Tests of\u00a0Group-Counterfactuals for\u00a0XAI"],"prefix":"10.1007","author":[{"given":"Greta","family":"Warren","sequence":"first","affiliation":[]},{"given":"Eoin","family":"Delaney","sequence":"additional","affiliation":[]},{"given":"Christophe","family":"Gu\u00e9ret","sequence":"additional","affiliation":[]},{"given":"Mark T.","family":"Keane","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,24]]},"reference":[{"key":"14_CR1","doi-asserted-by":"crossref","unstructured":"Artelt, A., Gregoriades, A.: \u201chow to make them stay?\"\u2013diverse counterfactual explanations of employee attrition. arXiv preprint arXiv:2303.04579 (2023)","DOI":"10.5220\/0011961300003467"},{"key":"14_CR2","unstructured":"Artelt, A., Gregoriades, A.: A two-stage algorithm for cost-efficient multi-instance counterfactual explanations. arXiv preprint arXiv:2403.01221 (2024)"},{"key":"14_CR3","doi-asserted-by":"crossref","unstructured":"Barocas, S., Selbst, A.D., Raghavan, M.: The hidden assumptions behind counterfactual explanations and principal reasons. In: Facct-20, pp. 80\u201389 (2020)","DOI":"10.1145\/3351095.3372830"},{"key":"14_CR4","doi-asserted-by":"crossref","unstructured":"Byrne, R.M.: Counterfactuals in explainable artificial intelligence (XAI): evidence from human reasoning. In: IJCAI-19, pp. 6276\u20136282 (2019)","DOI":"10.24963\/ijcai.2019\/876"},{"key":"14_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2023.121954","volume":"238","author":"E Carrizosa","year":"2024","unstructured":"Carrizosa, E., Ram\u00edrez-Ayerbe, J., Morales, D.R.: Generating collective counterfactual explanations in score-based classification via mathematical optimization. Expert Syst. Appl. 238, 121954 (2024)","journal-title":"Expert Syst. Appl."},{"key":"14_CR6","doi-asserted-by":"crossref","unstructured":"Carrizosa, E., Ram\u00edrez-Ayerbe, J., Morales, D.R.: Mathematical optimization modelling for group counterfactual explanations. Eur. J. Oper. Res. (2024)","DOI":"10.1016\/j.ejor.2024.01.002"},{"key":"14_CR7","doi-asserted-by":"publisher","first-page":"1481","DOI":"10.3758\/s13421-023-01407-5","volume":"51","author":"L Celar","year":"2023","unstructured":"Celar, L., Byrne, R.M.: How people reason with counterfactual and causal explanations for artificial intelligence decisions in familiar and unfamiliar domains. Memory Cogn. 51, 1481\u20131496 (2023)","journal-title":"Memory Cogn."},{"key":"14_CR8","doi-asserted-by":"crossref","unstructured":"Dai, X., Keane, M.T., Shalloo, L., Ruelle, E., Byrne, R.M.: Counterfactual explanations for prediction and diagnosis in XAI. In: Proceedings of the 2022 AAAI\/ACM Conference on AI, Ethics, and Society, pp. 215\u2013226 (2022)","DOI":"10.1145\/3514094.3534144"},{"key":"14_CR9","doi-asserted-by":"crossref","unstructured":"Dandl, S., Casalicchio, G., Bischl, B., Bothmann, L.: Interpretable regional descriptors: hyperbox-based local explanations. arXiv preprint arXiv:2305.02780 (2023)","DOI":"10.1007\/978-3-031-43418-1_29"},{"key":"14_CR10","first-page":"6478","volume":"34","author":"F Ding","year":"2021","unstructured":"Ding, F., Hardt, M., Miller, J., Schmidt, L.: Retiring adult: new datasets for fair machine learning. Adv. Neural Inf. Process. Syst. 34, 6478\u20136490 (2021)","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"14_CR11","unstructured":"Dua, D., Graff, C.: UCI machine learning repository (2017)"},{"key":"14_CR12","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1016\/j.cognition.2018.12.011","volume":"185","author":"BJ Edwards","year":"2019","unstructured":"Edwards, B.J., Williams, J.J., Gentner, D., Lombrozo, T.: Explanation recruits comparison in a category-learning task. Cognition 185, 21\u201338 (2019)","journal-title":"Cognition"},{"key":"14_CR13","doi-asserted-by":"crossref","unstructured":"Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 1189\u20131232 (2001)","DOI":"10.1214\/aos\/1013203451"},{"issue":"5","key":"14_CR14","doi-asserted-by":"publisher","first-page":"93","DOI":"10.1145\/3236009","volume":"51","author":"R Guidotti","year":"2018","unstructured":"Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 93 (2018). https:\/\/doi.org\/10.1145\/3236009","journal-title":"ACM Comput. Surv. (CSUR)"},{"key":"14_CR15","unstructured":"Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable ai: challenges and prospects. arXiv preprint arXiv:1812.04608 (2018)"},{"key":"14_CR16","unstructured":"Johnson, S.G., Johnston, A.M., Toig, A.E., Keil, F.C.: Explanatory scope informs causal strength inferences, pp. 2453\u20132458 (2014)"},{"key":"14_CR17","unstructured":"Kanamori, K., Takagi, T., Kobayashi, K., Ike, Y.: Counterfactual explanation trees: transparent and consistent actionable recourse with decision trees. In: AISTAT-22, pp. 1846\u20131870. PMLR (2022)"},{"issue":"5","key":"14_CR18","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3527848","volume":"55","author":"AH Karimi","year":"2022","unstructured":"Karimi, A.H., Barthe, G., Sch\u00f6lkopf, B., Valera, I.: A survey of algorithmic recourse: contrastive explanations and consequential recommendations. ACM Comput. Surv. 55(5), 1\u201329 (2022). https:\/\/doi.org\/10.1145\/3527848","journal-title":"ACM Comput. Surv."},{"key":"14_CR19","doi-asserted-by":"crossref","unstructured":"Karimi, A.H., Sch\u00f6lkopf, B., Valera, I.: Algorithmic recourse: from counterfactual explanations to interventions. In: Facct-21, pp. 353\u2013362 (2021)","DOI":"10.1145\/3442188.3445899"},{"key":"14_CR20","doi-asserted-by":"crossref","unstructured":"Kasirzadeh, A., Smart, A.: The use and misuse of counterfactuals in ethical machine learning. In: Facct-21, pp. 228-236 (2021)","DOI":"10.1145\/3442188.3445886"},{"key":"14_CR21","doi-asserted-by":"crossref","unstructured":"Keane, M.T., Kenny, E.M., Delaney, E., Smyth, B.: If only we had better counterfactual explanations: five key deficits to rectify in the evaluation of counterfactual xai techniques. In: IJCAI-21, pp. 4466\u20134474 (2021)","DOI":"10.24963\/ijcai.2021\/609"},{"key":"14_CR22","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"163","DOI":"10.1007\/978-3-030-58342-2_11","volume-title":"Case-Based Reasoning Research and Development","author":"MT Keane","year":"2020","unstructured":"Keane, M.T., Smyth, B.: Good counterfactuals and where to find them: a case-based technique for generating counterfactuals for explainable AI (XAI). In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 163\u2013178. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-58342-2_11"},{"key":"14_CR23","doi-asserted-by":"publisher","first-page":"227","DOI":"10.1146\/annurev.psych.57.102904.190100","volume":"57","author":"FC Keil","year":"2006","unstructured":"Keil, F.C.: Explanation and understanding. Ann. Rev. Psychol. 57, 227\u2013254 (2006)","journal-title":"Ann. Rev. Psychol."},{"key":"14_CR24","doi-asserted-by":"crossref","unstructured":"Kenny, E.M., Keane, M.T.: On generating plausible counterfactual and semi-factual explanations for deep learning. In: AAAI-21, vol. 35, no. 13, pp. 11575\u201311585 (2021)","DOI":"10.1609\/aaai.v35i13.17377"},{"key":"14_CR25","unstructured":"Klaise, J., Van\u00a0Looveren, A., Vacanti, G., Coca, A.: Alibi: algorithms for monitoring and explaining machine learning models (2020)"},{"key":"14_CR26","doi-asserted-by":"crossref","unstructured":"Kuhl, U., Artelt, A., Hammer, B.: Keep your friends close and your counterfactuals closer. In: Facct-22, pp. 2125\u20132137 (2022)","DOI":"10.1145\/3531146.3534630"},{"key":"14_CR27","doi-asserted-by":"publisher","DOI":"10.1016\/j.artint.2021.103473","volume":"296","author":"M Langer","year":"2021","unstructured":"Langer, M., et al.: What do we want from explainable artificial intelligence (xai)?-a stakeholder perspective on xai and a conceptual model guiding interdisciplinary xai research. Artif. Intell. 296, 103473 (2021)","journal-title":"Artif. Intell."},{"key":"14_CR28","volume-title":"Counterfactuals","author":"D Lewis","year":"2013","unstructured":"Lewis, D.: Counterfactuals. John Wiley & Sons, Hoboken (2013)"},{"issue":"10","key":"14_CR29","doi-asserted-by":"publisher","first-page":"748","DOI":"10.1016\/j.tics.2016.08.001","volume":"20","author":"T Lombrozo","year":"2016","unstructured":"Lombrozo, T.: Explanatory preferences shape learning and inference. Trends Cogn. Sci. 20(10), 748\u2013759 (2016)","journal-title":"Trends Cogn. Sci."},{"key":"14_CR30","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.artint.2018.07.007","volume":"267","author":"T Miller","year":"2019","unstructured":"Miller, T.: Explanation in artificial intelligence: insights from the social sciences. Artif. Intell. 267, 1\u201338 (2019)","journal-title":"Artif. Intell."},{"key":"14_CR31","doi-asserted-by":"crossref","unstructured":"Mothilal, R.K., Sharma, A., Tan, C.: Explaining machine learning classifiers through diverse counterfactual explanations. In: Facct-20, pp. 607\u2013617 (2020)","DOI":"10.1145\/3351095.3372850"},{"key":"14_CR32","doi-asserted-by":"publisher","first-page":"4978","DOI":"10.3168\/jds.2022-22803","volume":"106","author":"A Pakrashi","year":"2023","unstructured":"Pakrashi, A., et al.: Early detection of subclinical mastitis in lactating dairy cows using cow level features. J. Dairy Sci. 106, 4978\u20134990 (2023)","journal-title":"J. Dairy Sci."},{"key":"14_CR33","unstructured":"Plumb, G., Terhorst, J., Sankararaman, S., Talwalkar, A.: Explaining groups of points in low-dimensional representations. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, pp. 7762\u20137771 (2020)"},{"key":"14_CR34","first-page":"12187","volume":"33","author":"K Rawal","year":"2020","unstructured":"Rawal, K., Lakkaraju, H.: Beyond individualized recourse: interpretable and interactive summaries of actionable recourses. Adv. Neural. Inf. Process. Syst. 33, 12187\u201312198 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"issue":"3","key":"14_CR35","doi-asserted-by":"publisher","first-page":"429","DOI":"10.1037\/0022-3514.65.3.429","volume":"65","author":"SJ Read","year":"1993","unstructured":"Read, S.J., Marcus-Newhall, A.: Explanatory coherence in social explanations: a parallel distributed processing account. J. Pers. Soc. Psychol. 65(3), 429\u2013447 (1993)","journal-title":"J. Pers. Soc. Psychol."},{"key":"14_CR36","unstructured":"Ryan, C., Gu\u00e9ret, C., Berry, D., Corcoran, M., Keane, M.T., Mac\u00a0Namee, B.: Predicting illness for a sustainable dairy agriculture: predicting and explaining the onset of mastitis in dairy cows. arXiv preprint arXiv:2101.02188 (2021)"},{"key":"14_CR37","unstructured":"Verma, S., Dickerson, J., Hines, K.: Counterfactual explanations for machine learning: a review. arXiv preprint arXiv:2010.10596 (2022)"},{"key":"14_CR38","doi-asserted-by":"publisher","DOI":"10.1016\/j.artint.2020.103404","volume":"291","author":"J van der Waa","year":"2021","unstructured":"van der Waa, J., Nieuwburg, E., Cremers, A., Neerincx, M.: Evaluating xai: a comparison of rule\/example-based explanations. Artif. Intell. 291, 103404 (2021)","journal-title":"Artif. Intell."},{"key":"14_CR39","first-page":"841","volume":"31","author":"S Wachter","year":"2018","unstructured":"Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Harvard J. Law Technol. 31, 841 (2018)","journal-title":"Harvard J. Law Technol."},{"key":"14_CR40","doi-asserted-by":"crossref","unstructured":"Warren, G., Byrne, R.M.J., Keane, M.T.: Categorical and continuous features in counterfactual explanations of AI systems. In: IUI \u201923 (2023)","DOI":"10.1145\/3581641.3584090"},{"key":"14_CR41","unstructured":"Warren, G., Keane, M.T., Gueret, C., Delaney, E.: If Only...If Only...If Only...we could explain everything. In: IJCAI-23 XAI Workshop (2023)"}],"container-title":["Lecture Notes in Computer Science","Case-Based Reasoning Research and Development"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-63646-2_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T13:42:41Z","timestamp":1732282961000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-63646-2_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031636455","9783031636462"],"references-count":41,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-63646-2_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"24 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCBR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Case-Based Reasoning","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Merida","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Mexico","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 July 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"32","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccbr2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccbr2024.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}