{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T22:25:29Z","timestamp":1742941529272,"version":"3.40.3"},"publisher-location":"Cham","reference-count":42,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031636455"},{"type":"electronic","value":"9783031636462"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-63646-2_10","type":"book-chapter","created":{"date-parts":[[2024,6,23]],"date-time":"2024-06-23T23:02:13Z","timestamp":1719183733000},"page":"143-158","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Extracting Indexing Features for\u00a0CBR from\u00a0Deep Neural Networks: A Transfer Learning Approach"],"prefix":"10.1007","author":[{"given":"Zachary","family":"Wilkerson","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8666-3416","authenticated-orcid":false,"given":"David","family":"Leake","sequence":"additional","affiliation":[]},{"given":"Vibhas","family":"Vats","sequence":"additional","affiliation":[]},{"given":"David","family":"Crandall","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,24]]},"reference":[{"issue":"1","key":"10_CR1","doi-asserted-by":"publisher","first-page":"39","DOI":"10.3233\/AIC-1994-7104","volume":"7","author":"A Aamodt","year":"1994","unstructured":"Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39\u201352 (1994)","journal-title":"AI Commun."},{"key":"10_CR2","unstructured":"Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https:\/\/www.tensorflow.org\/"},{"key":"10_CR3","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"15","DOI":"10.1007\/978-3-030-01081-2_2","volume-title":"Case-Based Reasoning Research and Development","author":"K Amin","year":"2018","unstructured":"Amin, K., Kapetanakis, S., Althoff, K.-D., Dengel, A., Petridis, M.: Answering with cases: a CBR approach to deep learning. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 15\u201327. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01081-2_2"},{"key":"10_CR4","series-title":"Advances in Intelligent Systems and Computing","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1007\/978-3-030-29513-4_32","volume-title":"Intelligent Systems and Applications","author":"K Amin","year":"2020","unstructured":"Amin, K., Lancaster, G., Kapetanakis, S., Althoff, K.-D., Dengel, A., Petridis, M.: Advanced similarity measures using word embeddings and siamese networks in CBR. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1038, pp. 449\u2013462. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-29513-4_32"},{"key":"10_CR5","unstructured":"Bach, K., Mork, P.: On the explanation of similarity for developing and deploying CBR systems. In: Proceedings of the Thirty-Third International Florida Artificial Intelligence Research Society Conference (FLAIRS 2020) (2020)"},{"key":"10_CR6","unstructured":"Barletta, R., Mark, W.: Explanation-based indexing of cases. In: Kolodner, J. (ed.) Proceedings of a Workshop on Case-Based Reasoning, pp. 50\u201360. DARPA, Morgan Kaufmann, Palo Alto (1988)"},{"key":"10_CR7","unstructured":"Barnett, A.J., et al.: Interpretable mammographic image classification using case-based reasoning and deep learning. In: Proceedings of IJCAI-21 Workshop on Deep Learning, Case-Based Reasoning, and AutoML (2021). https:\/\/arxiv.org\/pdf\/2107.05605"},{"key":"10_CR8","unstructured":"Bhatta, S., Goel, A.: Model-based learning of structural indices to design cases. In: Proceedings of the IJCAI-93 Workshop on Reuse of Design, pp. A1\u2013A13. IJCAI, Chambery, France (1993)"},{"key":"10_CR9","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"291","DOI":"10.1007\/3-540-63233-6_500","volume-title":"Case-Based Reasoning Research and Development","author":"A Bonzano","year":"1997","unstructured":"Bonzano, A., Cunningham, P., Smyth, B.: Using introspective learning to improve retrieval in CBR: a case study in air traffic control. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 291\u2013302. Springer, Heidelberg (1997). https:\/\/doi.org\/10.1007\/3-540-63233-6_500"},{"key":"10_CR10","volume":"6","author":"J Chai","year":"2021","unstructured":"Chai, J., Zeng, H., Li, A., Ngai, E.W.: Deep learning in computer vision: a critical review of emerging techniques and application scenarios. Mach. Learn. Appl. 6, 100134 (2021)","journal-title":"Mach. Learn. Appl."},{"key":"10_CR11","unstructured":"Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep learning for interpretable image recognition. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8930\u20138941. Curran (2019)"},{"issue":"1\u20132","key":"10_CR12","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/S0004-3702(99)00047-8","volume":"112","author":"M Cox","year":"1999","unstructured":"Cox, M., Ram, A.: Introspective multistrategy learning: on the construction of learning strategies. Artif. Intell. 112(1\u20132), 1\u201355 (1999)","journal-title":"Artif. Intell."},{"key":"10_CR13","doi-asserted-by":"crossref","unstructured":"Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248\u2013255 (2009)","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"10_CR14","unstructured":"Domeshek, E.: Indexing stories as social advice. In: Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 16\u201321. AAAI Press, Menlo Park (1991)"},{"issue":"1","key":"10_CR15","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1080\/09528130010029794","volume":"13","author":"S Fox","year":"2001","unstructured":"Fox, S., Leake, D.: Introspective reasoning for index refinement in case-based reasoning. J. Exp. Theor. Artif. Intell. 13(1), 63\u201388 (2001)","journal-title":"J. Exp. Theor. Artif. Intell."},{"key":"10_CR16","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1007\/978-3-031-40177-0_10","volume-title":"Case-Based Reasoning Research and Development","author":"L Gates","year":"2023","unstructured":"Gates, L., Leake, D., Wilkerson, K.: Cases are king: a user study of case presentation to explain CBR decisions. In: Massie, S., Chakraborti, S. (eds.) ICCBR 2023. LNCS, vol. 14141, pp. 153\u2013168. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-40177-0_10"},{"key":"10_CR17","unstructured":"Goldstein, E., Kedar, S., Bareiss, R.: Easing the creation of a multipurpose case library. In: Proceedings of the AAAI-93 Workshop on Case-Based Reasoning, pp. 12\u201318. AAAI Press, Menlo Park (1993)"},{"key":"10_CR18","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., van\u00a0der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks (2016). https:\/\/arxiv.org\/abs\/1608.06993","DOI":"10.1109\/CVPR.2017.243"},{"key":"10_CR19","doi-asserted-by":"crossref","unstructured":"Kenny, E.M., Keane, M.T.: Twin-systems to explain artificial neural networks using case-based reasoning: comparative tests of feature-weighting methods in ANN-CBR twins for XAI. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (2019)","DOI":"10.24963\/ijcai.2019\/376"},{"key":"10_CR20","doi-asserted-by":"publisher","first-page":"5455","DOI":"10.1007\/s10462-020-09825-6","volume":"53","author":"A Khan","year":"2019","unstructured":"Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53, 5455\u20135516 (2019)","journal-title":"Artif. Intell. Rev."},{"issue":"1","key":"10_CR21","first-page":"54","volume":"32","author":"M Klenk","year":"2011","unstructured":"Klenk, M., Aha, D.W., Molineaux, M.: The case for case-based transfer learning. AI Mag. 32(1), 54\u201369 (2011)","journal-title":"AI Mag."},{"key":"10_CR22","unstructured":"Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: Proceedings of the 32nd International Conference on Machine Learning (2015)"},{"key":"10_CR23","unstructured":"Leake, D.: An indexing vocabulary for case-based explanation. In: Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 10\u201315. AAAI Press, Menlo Park (1991)"},{"key":"10_CR24","unstructured":"Leake, D.: CBR in context: the present and future. In: Leake, D. (ed.) Case-Based Reasoning: Experiences, Lessons, and Future Directions, pp. 3\u201330. AAAI Press, Menlo Park, CA (1996). http:\/\/www.cs.indiana.edu\/~leake\/papers\/a-96-01.html"},{"issue":"1","key":"10_CR25","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1142\/S0218213004001508","volume":"13","author":"D Leake","year":"2004","unstructured":"Leake, D., Sooriamurthi, R.: Case dispatching versus case-base merging: when MCBR matters. Int. J. Artif. Intell. Tools 13(1), 237\u2013254 (2004)","journal-title":"Int. J. Artif. Intell. Tools"},{"key":"10_CR26","doi-asserted-by":"crossref","unstructured":"Leake, D., Wilkerson, Z., Crandall, D.: Extracting case indices from convolutional neural networks: a comparative study. In: Case-Based Reasoning Research and Development, ICCBR 2022 (2022)","DOI":"10.1007\/978-3-031-14923-8_6"},{"key":"10_CR27","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"3","DOI":"10.1007\/978-3-031-40177-0_1","volume-title":"Case-Based Reasoning Research and Development","author":"D Leake","year":"2023","unstructured":"Leake, D., Wilkerson, Z., Vats, V., Acharya, K., Crandall, D.: Examining the impact of network architecture on extracted feature quality for CBR. In: Massie, S., Chakraborti, S. (eds.) ICCBR 2023. LNCS, vol. 14141, pp. 3\u201318. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-40177-0_1"},{"key":"10_CR28","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"125","DOI":"10.1007\/978-3-030-86957-1_9","volume-title":"Case-Based Reasoning Research and Development","author":"D Leake","year":"2021","unstructured":"Leake, D., Ye, X.: Harmonizing case retrieval and\u00a0adaptation with alternating optimization. In: S\u00e1nchez-Ruiz, A.A., Floyd, M.W. (eds.) ICCBR 2021. LNCS (LNAI), vol. 12877, pp. 125\u2013139. Springer, Cham (2021). https:\/\/doi.org\/10.1007\/978-3-030-86957-1_9"},{"key":"10_CR29","doi-asserted-by":"crossref","unstructured":"Li, O., Liu, H., Chen, C., Rudin, C.: Deep learning for case-based reasoning through prototypes: a neural network that explains its predictions. https:\/\/arxiv.org\/abs\/1710.04806 (2018)","DOI":"10.1609\/aaai.v32i1.11771"},{"key":"10_CR30","unstructured":"Martin, K., Wiratunga, N., Sani, S., Massie, S., Clos, J.: A convolutonal siamese network for developing similarity knowledge in the Selfback dataset. In: Proceedings of the International Conference on Case-Based Reasoning Workshops, CEUR Workshop Proceedings, ICCBR, pp. 85\u201394 (2017)"},{"key":"10_CR31","unstructured":"Oehlmann, R., Edwards, P., Sleeman, D.: Changing the viewpoint: re-indexing by introspective questioning. In: Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society, Atlanta, GA (1994)"},{"key":"10_CR32","doi-asserted-by":"publisher","unstructured":"Ribani, R., Marengoni, M.: A survey of transfer learning for convolutional neural networks. In: 2019 32nd SIBGRAPI Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), pp. 47\u201357 (2019). https:\/\/doi.org\/10.1109\/SIBGRAPI-T.2019.00010","DOI":"10.1109\/SIBGRAPI-T.2019.00010"},{"key":"10_CR33","doi-asserted-by":"crossref","unstructured":"Sani, S., Wiratunga, N., Massie, S.: Learning deep features for KNN-based human activity recognition. In: 25th International conference on case-based reasoning (ICCBR 2017) (2017)","DOI":"10.1007\/978-3-319-61030-6_23"},{"key":"10_CR34","series-title":"Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence)","doi-asserted-by":"publisher","first-page":"339","DOI":"10.1007\/978-3-030-01081-2_23","volume-title":"Case-Based Reasoning Research and Development","author":"S Sani","year":"2018","unstructured":"Sani, S., Wiratunga, N., Massie, S., Cooper, K.: Personalised human activity recognition using matching networks. In: Cox, M.T., Funk, P., Begum, S. (eds.) ICCBR 2018. LNCS (LNAI), vol. 11156, pp. 339\u2013353. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01081-2_23"},{"key":"10_CR35","unstructured":"Schank, R., et al.: Towards a general content theory of indices. In: Proceedings of the 1990 AAAI Spring Symposium on Case-Based Reasoning. AAAI Press, Menlo Park (1990)"},{"key":"10_CR36","doi-asserted-by":"crossref","unstructured":"Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H.S., Hospedales, T.M.: Learning to compare: relation network for few-shot learning. In: 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (2018)","DOI":"10.1109\/CVPR.2018.00131"},{"key":"10_CR37","doi-asserted-by":"crossref","unstructured":"Turner, J.T., Floyd, M.W., Gupta, K.M., Aha, D.W.: Novel object discovery using case-based reasoning and convolutional neural networks. In: Case-Based Reasoning Research and Development, ICCBR 2018, pp. 399\u2013414 (2018)","DOI":"10.1007\/978-3-030-01081-2_27"},{"key":"10_CR38","doi-asserted-by":"crossref","unstructured":"Turner, J.T., Floyd, M.W., Gupta, K.M., Oates, T.: NOD-CC: a hybrid CBR-CNN architecture for novel object discovery. In: Case-Based Reasoning Research and Development, ICCBR 2019, pp. 373\u2013387 (2019)","DOI":"10.1007\/978-3-030-29249-2_25"},{"issue":"1\u20135","key":"10_CR39","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1023\/A:1006593614256","volume":"11","author":"D Wettschereck","year":"1997","unstructured":"Wettschereck, D., Aha, D., Mohri, T.: A review and empirical evaluation of feature-weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11(1\u20135), 273\u2013314 (1997)","journal-title":"Artif. Intell. Rev."},{"key":"10_CR40","doi-asserted-by":"crossref","unstructured":"Wilkerson, Z., Leake, D., Crandall, D.: On combining knowledge-engineered and network-extracted features for retrieval. In: Case-Based Reasoning Research and Development, ICCBR 2021, pp. 248\u2013262 (2021)","DOI":"10.1007\/978-3-030-86957-1_17"},{"issue":"9","key":"10_CR41","doi-asserted-by":"publisher","first-page":"2251","DOI":"10.1109\/TPAMI.2018.2857768","volume":"41","author":"Y Xian","year":"2018","unstructured":"Xian, Y., Lampert, C.H., Schiele, B., Akata, Z.: Zero-shot learning - a comprehensive evaluation of the good, the bad and the ugly. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 41(9), 2251\u20132265 (2018)","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI)"},{"issue":"1","key":"10_CR42","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1109\/JPROC.2020.3004555","volume":"109","author":"F Zhuang","year":"2021","unstructured":"Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43\u201376 (2021)","journal-title":"Proc. IEEE"}],"container-title":["Lecture Notes in Computer Science","Case-Based Reasoning Research and Development"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-63646-2_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,23]],"date-time":"2024-06-23T23:03:56Z","timestamp":1719183836000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-63646-2_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031636455","9783031636462"],"references-count":42,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-63646-2_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"24 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"ICCBR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Case-Based Reasoning","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Merida","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Mexico","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"1 July 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"32","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iccbr2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/iccbr2024.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}