{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T10:32:03Z","timestamp":1742985123649,"version":"3.40.3"},"publisher-location":"Cham","reference-count":35,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031632266"},{"type":"electronic","value":"9783031632273"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-63227-3_9","type":"book-chapter","created":{"date-parts":[[2024,6,22]],"date-time":"2024-06-22T08:02:02Z","timestamp":1719043322000},"page":"124-138","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["On 6G-Enabled SDN-Based Mobile Network User Plane with\u00a0DRL-Based Traffic Engineering"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-5451-8847","authenticated-orcid":false,"given":"Robert","family":"Ko\u0142akowski","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3836-7900","authenticated-orcid":false,"given":"Lechos\u0142aw","family":"Tomaszewski","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2954-3418","authenticated-orcid":false,"given":"S\u0142awomir","family":"Kukli\u0144ski","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,23]]},"reference":[{"key":"9_CR1","unstructured":"Business Research Insights: SDN orchestration market size, share, growth, and industry analysis, by type (solutions, & services), by application (cloud service providers, telecom service providers, & others) and regional forecast to 2032 (2024). https:\/\/www.businessresearchinsights.com\/market-reports\/sdn-orchestration-market-109427. Accessed 08 June 2024"},{"key":"9_CR2","unstructured":"ITU-R: Future technology trends of terrestrial International Mobile Telecommunications systems towards 2030 and beyond. Report M.2516-0 (11\/2022), International Telecommunication Union - Radiocommunication Sector (2022)"},{"key":"9_CR3","unstructured":"Huawei: 6G: the next horizon from connected people and things to connected intelligence. White paper, Huawei: Shenzen, China (2021). https:\/\/www-file.huawei.com\/-\/media\/corp2020\/pdf\/tech-insights\/1\/6g-white-paper-en.pdf?la=en"},{"key":"9_CR4","unstructured":"NGMN: 6G use cases and analysis. White Paper version 1.0, Next Generation Mobile Networks (NGMN) Alliance (2022). https:\/\/www.ngmn.org\/wp-content\/uploads\/NGMN-6G-Use-Cases-and-Analysis.pdf"},{"key":"9_CR5","unstructured":"3GPP: System architecture for the 5G System (5GS). Technical Standard TS 23.501, ver. 18.5.0, 3rd Generation Partnership Project (2024)"},{"key":"9_CR6","unstructured":"3GPP: Interface between the Control Plane and the User Plane nodes. Technical Standard TS 29.244, ver. 18.5.0, 3rd Generation Partnership Project (2024)"},{"key":"9_CR7","doi-asserted-by":"publisher","unstructured":"Yadav, R., Kamran, R., Jha, P., Karandikar, A.: Applying SDN to mobile networks: a new perspective for 6G architecture (2023). https:\/\/doi.org\/10.48550\/arXiv.2307.05924","DOI":"10.48550\/arXiv.2307.05924"},{"key":"9_CR8","unstructured":"ONF: OpenFlow switch specification; version 1.5.1 (protocol version 0x06). Specification ONF TS-025, Open Networking Foundation (2015). https:\/\/opennetworking.org\/wp-content\/uploads\/2014\/10\/openflow-switch-v1.5.1.pdf"},{"key":"9_CR9","unstructured":"ITU-R: Framework and overall objectives of the future development of IMT for 2030 and beyond. Recommendation M.2160-0 (11\/2023), International Telecommunication Union - Radiocommunication Sector (2023)"},{"key":"9_CR10","unstructured":"ITU-R: IMT towards 2030 and beyond (2024). https:\/\/www.itu.int\/en\/ITU-R\/study-groups\/rsg5\/rwp5d\/imt-2030\/Pages\/default.aspx. Accessed 08 June 2024"},{"key":"9_CR11","doi-asserted-by":"publisher","unstructured":"Cha, J., et al.: RAN-CN converged user-plane for 6G cellular networks (2022). https:\/\/doi.org\/10.1109\/GLOBECOM48099.2022.10001487","DOI":"10.1109\/GLOBECOM48099.2022.10001487"},{"key":"9_CR12","doi-asserted-by":"publisher","unstructured":"Corici, M., Troudt, E., Magedanz, T., Schotten, H.: Organic 6G networks: decomplexification of software-based core networks. In: 2022 Joint European Conference on Networks and Communications & 6G Summit (EuCNC\/6G Summit), pp. 541\u2013546 (2022). https:\/\/doi.org\/10.1109\/EuCNC\/6GSummit54941.2022.9815730","DOI":"10.1109\/EuCNC\/6GSummit54941.2022.9815730"},{"key":"9_CR13","doi-asserted-by":"publisher","first-page":"10179","DOI":"10.1109\/ACCESS.2021.3049945","volume":"9","author":"A Abdulghaffar","year":"2021","unstructured":"Abdulghaffar, A., Mahmoud, A., Abu-Amara, M., Sheltami, T.: Modeling and evaluation of software defined networking based 5G core network architecture. IEEE Access 9, 10179\u201310198 (2021). https:\/\/doi.org\/10.1109\/ACCESS.2021.3049945","journal-title":"IEEE Access"},{"key":"9_CR14","doi-asserted-by":"publisher","unstructured":"Costa-Requena, J., Poutanen, A., Vural, S., Kamel, G., Clark, C., Roy, S.K.: SDN-based UPF for mobile backhaul network slicing. In: 2018 European Conference on Networks and Communications (EuCNC). pp. 48\u201353 (2018), https:\/\/doi.org\/10.1109\/EuCNC.2018.8442795","DOI":"10.1109\/EuCNC.2018.8442795"},{"key":"9_CR15","unstructured":"Open Networking Foundation: Using P4 and programmable switches to implement a 4G\/5G UPF in Aether (2021). https:\/\/opennetworking.org\/news-and-events\/blog\/using-p4-and-programmable-switches-to-implement-a-4g-5g-upf-in-aether\/. Accessed 08 June 2024"},{"key":"9_CR16","doi-asserted-by":"publisher","unstructured":"Schwarzmann, S., et al.: An intelligent user plane to support in-network computing in 6G networks. In: ICC 2023 - IEEE International Conference on Communications, pp. 1100\u20131105 (2023). https:\/\/doi.org\/10.1109\/ICC45041.2023.10279652","DOI":"10.1109\/ICC45041.2023.10279652"},{"key":"9_CR17","doi-asserted-by":"crossref","unstructured":"Abbasi, M.R., Guleria, A., Devi, M.S.: Traffic engineering in software defined networks: a survey. J. Telecommun. Inf. Technol. 2016(4), 3\u201414 (2016). https:\/\/jtit.pl\/jtit\/article\/view\/757","DOI":"10.26636\/jtit.2016.4.757"},{"key":"9_CR18","doi-asserted-by":"publisher","first-page":"18121","DOI":"10.1109\/ACCESS.2022.3151081","volume":"10","author":"G Kim","year":"2022","unstructured":"Kim, G., Kim, Y., Lim, H.: Deep reinforcement learning-based routing on software-defined networks. IEEE Access 10, 18121\u201318133 (2022). https:\/\/doi.org\/10.1109\/ACCESS.2022.3151081","journal-title":"IEEE Access"},{"key":"9_CR19","doi-asserted-by":"publisher","unstructured":"Altamirano, J.C., Slimane, M.A., Hassan, H., Drira, K.: QoS-aware network self-management architecture based on DRL and SDN for remote areas. In: 2022 IEEE 11th IFIP International Conference on Performance Evaluation and Modeling in Wireless and Wired Networks (PEMWN), pp. 1\u20136 (2022). https:\/\/doi.org\/10.23919\/PEMWN56085.2022.9963841","DOI":"10.23919\/PEMWN56085.2022.9963841"},{"key":"9_CR20","doi-asserted-by":"publisher","unstructured":"Guo, Y., Tang, Q., Ma, Y., Tian, H., Chen, K.: Distributed traffic engineering in hybrid software defined networks: a multi-agent reinforcement learning framework (2023). https:\/\/doi.org\/10.48550\/arXiv.2307.15922","DOI":"10.48550\/arXiv.2307.15922"},{"key":"9_CR21","doi-asserted-by":"publisher","unstructured":"Zaicu, N.F., Luckie, M., Nelson, R., Barcellos, M.: Helix: Traffic engineering for multi-controller SDN. In: Proceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR), pp. 80\u201487. SOSR \u201921, Association for Computing Machinery, New York, NY, USA (2021). https:\/\/doi.org\/10.1145\/3482898.3483354","DOI":"10.1145\/3482898.3483354"},{"key":"9_CR22","doi-asserted-by":"publisher","unstructured":"Feng, W., Han, C., Lian, F., Liu, X.: A data-efficient training method for deep reinforcement learning. Electronics 11(24) (2022). https:\/\/doi.org\/10.3390\/electronics11244205","DOI":"10.3390\/electronics11244205"},{"key":"9_CR23","doi-asserted-by":"publisher","unstructured":"Wang, Z., Jiang, M.: Enhancing data efficiency in reinforcement learning: a novel imagination mechanism based on mesh information propagation (2023). https:\/\/doi.org\/10.48550\/arXiv.2309.14243","DOI":"10.48550\/arXiv.2309.14243"},{"issue":"3","key":"9_CR24","doi-asserted-by":"publisher","first-page":"3476","DOI":"10.1109\/TPAMI.2022.3185549","volume":"45","author":"Z Bing","year":"2023","unstructured":"Bing, Z., Lerch, D., Huang, K., Knoll, A.: Meta-reinforcement learning in non-stationary and dynamic environments. IEEE Trans. Pattern Anal. Mach. Intell. 45(3), 3476\u20133491 (2023). https:\/\/doi.org\/10.1109\/TPAMI.2022.3185549","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"9_CR25","doi-asserted-by":"publisher","unstructured":"Zhang, Z., Wu, Z., Zhang, H., Wang, J.: Meta-learning-based deep reinforcement learning for multiobjective optimization problems (2022). https:\/\/doi.org\/10.48550\/arXiv.2105.02741","DOI":"10.48550\/arXiv.2105.02741"},{"key":"9_CR26","doi-asserted-by":"publisher","first-page":"184","DOI":"10.1016\/j.comcom.2022.09.029","volume":"196","author":"P Almasan","year":"2022","unstructured":"Almasan, P., Su\u00e1rez-Varela, J., Rusek, K., Barlet-Ros, P., Cabellos-Aparicio, A.: Deep reinforcement learning meets graph neural networks: exploring a routing optimization use case. Comput. Commun. 196, 184\u2013194 (2022). https:\/\/doi.org\/10.1016\/j.comcom.2022.09.029","journal-title":"Comput. Commun."},{"key":"9_CR27","doi-asserted-by":"publisher","unstructured":"Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimization algorithms (2017). https:\/\/doi.org\/10.48550\/arXiv.1707.06347","DOI":"10.48550\/arXiv.1707.06347"},{"key":"9_CR28","doi-asserted-by":"publisher","unstructured":"Zhao, T., Wang, Y., Sun, W., Chen, Y., Niub, G., Sugiyama, M.: Representation learning for continuous action spaces is beneficial for efficient policy learning (2022). https:\/\/doi.org\/10.48550\/arXiv.2211.13257","DOI":"10.48550\/arXiv.2211.13257"},{"key":"9_CR29","doi-asserted-by":"publisher","unstructured":"Abel, D., Barreto, A., Roy, B.V., Precup, D., van Hasselt, H., Singh, S.: A definition of continual reinforcement learning (2023). https:\/\/doi.org\/10.48550\/arXiv.2307.11046","DOI":"10.48550\/arXiv.2307.11046"},{"key":"9_CR30","doi-asserted-by":"crossref","unstructured":"Monahan, G.E.: A survey of partially observable Markov decision processes: theory, models, and algorithms. Manage. Sci. 28(1), 1\u201316 (1982). http:\/\/www.jstor.org\/stable\/2631070","DOI":"10.1287\/mnsc.28.1.1"},{"key":"9_CR31","doi-asserted-by":"publisher","unstructured":"Ibrahim, A.M., Yau, K.L.A., Chong, Y.W., Wu, C.: Applications of multi-agent deep reinforcement learning: models and algorithms. Appl. Sci. 11(22) (2021). https:\/\/doi.org\/10.3390\/app112210870","DOI":"10.3390\/app112210870"},{"key":"9_CR32","doi-asserted-by":"publisher","unstructured":"Tomaszewski, L., et al.: ETHER: energy-and cost-efficient framework for seamless connectivity over the integrated terrestrial and non-terrestrial 6G networks (2023). https:\/\/doi.org\/10.1007\/978-3-031-34171-7_2","DOI":"10.1007\/978-3-031-34171-7_2"},{"key":"9_CR33","unstructured":"ETSI: Network Functions Virtualisation (NFV); Management and Orchestration. Group Specification, GS NFV-MAN 001 V1.1.1, European Telecommunications Standards Institute (2014). https:\/\/www.etsi.org\/deliver\/etsi_gs\/nfv-man\/001_099\/001\/01.01.01_60\/gs_nfv-man001v010101p.pdf"},{"key":"9_CR34","unstructured":"IBM: an architectural blueprint for autonomic computing. IBM Autonomic Computing White Paper, Fourth Edition (2006)"},{"key":"9_CR35","unstructured":"Zhou, F.: Methods for network abstraction. Ph.D. thesis, University of Helsinki, Finland (2012)"}],"container-title":["IFIP Advances in Information and Communication Technology","Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-63227-3_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,22]],"date-time":"2024-06-22T08:04:30Z","timestamp":1719043470000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-63227-3_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031632266","9783031632273"],"references-count":35,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-63227-3_9","relation":{},"ISSN":["1868-4238","1868-422X"],"issn-type":[{"type":"print","value":"1868-4238"},{"type":"electronic","value":"1868-422X"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"23 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"AIAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"IFIP International Conference on Artificial Intelligence Applications and Innovations","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Corfu","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 June 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 June 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"20","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"aiai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ifipaiai.org\/2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}