{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,25]],"date-time":"2025-03-25T14:13:27Z","timestamp":1742912007513,"version":"3.40.3"},"publisher-location":"Cham","reference-count":27,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031624940"},{"type":"electronic","value":"9783031624957"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-62495-7_41","type":"book-chapter","created":{"date-parts":[[2024,6,21]],"date-time":"2024-06-21T20:19:24Z","timestamp":1719001164000},"page":"544-557","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Machine Learning-Driven Improvements in\u00a0HRV Artifact Correction for\u00a0Psychosis Prediction in\u00a0the\u00a0Schizophrenia Spectrum"],"prefix":"10.1007","author":[{"given":"Paraskevi V.","family":"Tsakmaki","sequence":"first","affiliation":[]},{"given":"Sotiris K.","family":"Tasoulis","sequence":"additional","affiliation":[]},{"given":"Spiros V.","family":"Georgakopoulos","sequence":"additional","affiliation":[]},{"given":"Vassilis P.","family":"Plagianakos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,22]]},"reference":[{"issue":"2","key":"41_CR1","doi-asserted-by":"publisher","first-page":"123","DOI":"10.1016\/S0169-2607(00)00081-X","volume":"63","author":"B Acar","year":"2000","unstructured":"Acar, B., Savelieva, I., Hemingway, H., Malik, M.: Automatic ectopic beat elimination in short-term heart rate variability measurement. Comput. Methods Programs Biomed. 63(2), 123\u2013131 (2000)","journal-title":"Comput. Methods Programs Biomed."},{"key":"41_CR2","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1007\/s10916-017-0796-2","volume":"41","author":"HJ Baek","year":"2017","unstructured":"Baek, H.J., Shin, J.: Effect of missing inter-beat interval data on heart rate variability analysis using wrist-worn wearables. J. Med. Syst. 41, 1\u20139 (2017)","journal-title":"J. Med. Syst."},{"issue":"4","key":"41_CR3","doi-asserted-by":"publisher","first-page":"100776","DOI":"10.1016\/j.irbm.2023.100776","volume":"44","author":"M Benchekroun","year":"2023","unstructured":"Benchekroun, M., Chevallier, B., Zalc, V., Istrate, D., Lenne, D., Vera, N.: The impact of missing data on heart rate variability features: a comparative study of interpolation methods for ambulatory health monitoring. IRBM 44(4), 100776 (2023)","journal-title":"IRBM"},{"issue":"6","key":"41_CR4","doi-asserted-by":"publisher","first-page":"623","DOI":"10.1111\/j.1469-8986.1997.tb02140.x","volume":"34","author":"GG Berntson","year":"1997","unstructured":"Berntson, G.G., et al.: Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6), 623\u2013648 (1997)","journal-title":"Psychophysiology"},{"issue":"7","key":"41_CR5","doi-asserted-by":"publisher","first-page":"762","DOI":"10.1001\/archpsyc.65.7.762","volume":"65","author":"M Bertelsen","year":"2008","unstructured":"Bertelsen, M., et al.: Five-year follow-up of a randomized multicenter trial of intensive early intervention vs standard treatment for patients with a first episode of psychotic illness: the opus trial. Arch. Gen. Psychiatry 65(7), 762\u2013771 (2008)","journal-title":"Arch. Gen. Psychiatry"},{"issue":"7","key":"41_CR6","doi-asserted-by":"publisher","first-page":"761","DOI":"10.1001\/jamapsychiatry.2014.243","volume":"71","author":"J Chiappelli","year":"2014","unstructured":"Chiappelli, J., et al.: Stress-induced increase in kynurenic acid as a potential biomarker for patients with schizophrenia and distress intolerance. JAMA Psychiat. 71(7), 761\u2013768 (2014)","journal-title":"JAMA Psychiat."},{"issue":"1","key":"41_CR7","first-page":"18","volume":"6","author":"GD Clifford","year":"2006","unstructured":"Clifford, G.D., Azuaje, F., Mcsharry, P., et al.: ECG statistics, noise, artifacts, and missing data. Adv. Methods Tools ECG Data Anal. 6(1), 18 (2006)","journal-title":"Adv. Methods Tools ECG Data Anal."},{"key":"41_CR8","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4612-6333-3","volume-title":"A Practical Guide to Splines","author":"C De Boor","year":"1978","unstructured":"De Boor, C., De Boor, C.: A Practical Guide to Splines, vol. 27. Springer-Verlag, New York (1978)"},{"issue":"9","key":"41_CR9","doi-asserted-by":"publisher","first-page":"1196","DOI":"10.1017\/S1047951119001951","volume":"29","author":"DM Garner","year":"2019","unstructured":"Garner, D.M., Vanderlei, F.M., Valenti, V.E., Vanderlei, L.C.M.: Non-linear regulation of cardiac autonomic modulation in obese youths: interpolation of ultra-short time series. Cardiol. Young 29(9), 1196\u20131201 (2019)","journal-title":"Cardiol. Young"},{"key":"41_CR10","doi-asserted-by":"publisher","first-page":"484","DOI":"10.1007\/s00216-004-2799-3","volume":"380","author":"A Gnauck","year":"2004","unstructured":"Gnauck, A.: Interpolation and approximation of water quality time series and process identification. Anal. Bioanal. Chem. 380, 484\u2013492 (2004)","journal-title":"Anal. Bioanal. Chem."},{"key":"41_CR11","doi-asserted-by":"publisher","first-page":"639444","DOI":"10.3389\/fdgth.2021.639444","volume":"3","author":"S Ishaque","year":"2021","unstructured":"Ishaque, S., Khan, N., Krishnan, S.: Trends in heart-rate variability signal analysis. Front. Digit. Health 3, 639444 (2021)","journal-title":"Front. Digit. Health"},{"key":"41_CR12","doi-asserted-by":"crossref","unstructured":"Kamath, M., et al.: Time-frequency analysis of heart rate variability signals in patients with autonomic dysfunction. In: Proceedings of Third International Symposium on Time-Frequency and Time-Scale Analysis (TFTS-96), pp. 373\u2013376. IEEE (1996)","DOI":"10.1109\/TFSA.1996.550070"},{"key":"41_CR13","unstructured":"Kamath, M., Fallen, E.: Correction of the heart rate variability signal for ectopics and missing beats\u2019 heart rate variability. In: Malik, M., Camm, A.J. (eds.) (1995)"},{"key":"41_CR14","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/1475-925X-11-2","volume":"11","author":"M Karlsson","year":"2012","unstructured":"Karlsson, M., H\u00f6rnsten, R., Rydberg, A., Wiklund, U.: Automatic filtering of outliers in RR intervals before analysis of heart rate variability in Holter recordings: a comparison with carefully edited data. Biomed. Eng. Online 11, 1\u201312 (2012)","journal-title":"Biomed. Eng. Online"},{"issue":"7","key":"41_CR15","doi-asserted-by":"publisher","first-page":"5047","DOI":"10.1111\/ejn.15800","volume":"56","author":"ZJ Lau","year":"2022","unstructured":"Lau, Z.J., Pham, T., Chen, S.A., Makowski, D.: Brain entropy, fractal dimensions and predictability: a review of complexity measures for EEG in healthy and neuropsychiatric populations. Eur. J. Neurosci. 56(7), 5047\u20135069 (2022)","journal-title":"Eur. J. Neurosci."},{"issue":"10","key":"41_CR16","doi-asserted-by":"publisher","first-page":"796","DOI":"10.3390\/w9100796","volume":"9","author":"M Lepot","year":"2017","unstructured":"Lepot, M., Aubin, J.B., Clemens, F.H.: Interpolation in time series: an introductive overview of existing methods, their performance criteria and uncertainty assessment. Water 9(10), 796 (2017)","journal-title":"Water"},{"issue":"3","key":"41_CR17","doi-asserted-by":"publisher","first-page":"354","DOI":"10.1093\/oxfordjournals.eurheartj.a014868","volume":"17","author":"M Malik","year":"1996","unstructured":"Malik, M., et al.: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 17(3), 354\u2013381 (1996)","journal-title":"Eur. Heart J."},{"issue":"2","key":"41_CR18","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1136\/adc.83.2.179","volume":"83","author":"MM Massin","year":"2000","unstructured":"Massin, M.M., Maeyns, K., Withofs, N., Ravet, F., G\u00e9rard, P.: Circadian rhythm of heart rate and heart rate variability. Arch. Dis. Child. 83(2), 179\u2013182 (2000)","journal-title":"Arch. Dis. Child."},{"key":"41_CR19","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1016\/j.bspc.2015.01.008","volume":"18","author":"D Nabil","year":"2015","unstructured":"Nabil, D., Reguig, F.B.: Ectopic beats detection and correction methods: A review. Biomed. Signal Process. Control 18, 228\u2013244 (2015)","journal-title":"Biomed. Signal Process. Control"},{"issue":"1","key":"41_CR20","doi-asserted-by":"publisher","first-page":"6332","DOI":"10.1038\/s41598-023-33359-w","volume":"13","author":"N Ricka","year":"2023","unstructured":"Ricka, N., Pellegrin, G., Fompeyrine, D.A., Lahutte, B., Geoffroy, P.A.: Predictive biosignature of major depressive disorder derived from physiological measurements of outpatients using machine learning. Sci. Rep. 13(1), 6332 (2023)","journal-title":"Sci. Rep."},{"issue":"1","key":"41_CR21","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1111\/j.1542-474X.2001.tb00080.x","volume":"6","author":"MA Salo","year":"2001","unstructured":"Salo, M.A., Huikuri, H.V., Seppanen, T.: Ectopic beats in heart rate variability analysis: effects of editing on time and frequency domain measures. Ann. Noninvasive Electrocardiol. 6(1), 5\u201317 (2001)","journal-title":"Ann. Noninvasive Electrocardiol."},{"issue":"2","key":"41_CR22","doi-asserted-by":"publisher","first-page":"e5165","DOI":"10.2196\/mental.5165","volume":"3","author":"J Torous","year":"2016","unstructured":"Torous, J., Kiang, M.V., Lorme, J., Onnela, J.P., et al.: New tools for new research in psychiatry: a scalable and customizable platform to empower data driven smartphone research. JMIR Mental Health 3(2), e5165 (2016)","journal-title":"JMIR Mental Health"},{"key":"41_CR23","doi-asserted-by":"publisher","first-page":"889","DOI":"10.1007\/978-3-319-75479-6_42-1","volume-title":"Handbook of Computational Neurodegeneration","author":"PV Tsakmaki","year":"2023","unstructured":"Tsakmaki, P.V., Tasoulis, S.K.: Heart rate variability indexes in schizophrenia. In: Vlamos, P., Kotsireas, I.S., Tarnanas, I. (eds.) Handbook of Computational Neurodegeneration, pp. 889\u2013897. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-319-75479-6_42-1"},{"key":"41_CR24","doi-asserted-by":"crossref","unstructured":"Van\u00a0Os, J.: Schizophrenia\/J. OS Van, S. Kapur. Lancet 9690 (2009)","DOI":"10.1016\/S0140-6736(09)60995-8"},{"key":"41_CR25","unstructured":"VK, M.: Correction of the heart rate variability signal for Ectopics and missing beats. Heart Rate Variability (1995)"},{"key":"41_CR26","doi-asserted-by":"publisher","first-page":"280","DOI":"10.1016\/j.compbiomed.2019.04.015","volume":"109","author":"C Yan","year":"2019","unstructured":"Yan, C., Li, P., Liu, C., Wang, X., Yin, C., Yao, L.: Novel gridded descriptors of poincar\u00e9 plot for analyzing heartbeat interval time-series. Comput. Biol. Med. 109, 280\u2013289 (2019)","journal-title":"Comput. Biol. Med."},{"issue":"19","key":"41_CR27","doi-asserted-by":"publisher","first-page":"7544","DOI":"10.3390\/s22197544","volume":"22","author":"A Zlatintsi","year":"2022","unstructured":"Zlatintsi, A., et al.: E-prevention: advanced support system for monitoring and relapse prevention in patients with psychotic disorders analyzing long-term multimodal data from wearables and video captures. Sensors 22(19), 7544 (2022)","journal-title":"Sensors"}],"container-title":["Communications in Computer and Information Science","Engineering Applications of Neural Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-62495-7_41","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T11:45:35Z","timestamp":1732275935000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-62495-7_41"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031624940","9783031624957"],"references-count":27,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-62495-7_41","relation":{},"ISSN":["1865-0929","1865-0937"],"issn-type":[{"type":"print","value":"1865-0929"},{"type":"electronic","value":"1865-0937"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"22 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"EANN","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Engineering Applications of Neural Networks","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Corfu","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Greece","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 June 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"30 June 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"25","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"eann2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/eannconf.org\/2024\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}