{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T21:04:36Z","timestamp":1726261476957},"publisher-location":"Cham","reference-count":16,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031622687"},{"type":"electronic","value":"9783031622694"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-62269-4_24","type":"book-chapter","created":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T14:02:22Z","timestamp":1718892142000},"page":"340-348","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Multi-modal Deep Learning for\u00a0Detecting Toxicity in\u00a0Transcribed-Audio Conversations"],"prefix":"10.1007","author":[{"given":"Ismail","family":"El Sayad","sequence":"first","affiliation":[]},{"given":"Josue","family":"Gourde","sequence":"additional","affiliation":[]},{"given":"Jake","family":"Pott","sequence":"additional","affiliation":[]},{"given":"Sachin","family":"Muthayan","sequence":"additional","affiliation":[]},{"given":"Simranjit","family":"Singh","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,21]]},"reference":[{"key":"24_CR1","doi-asserted-by":"crossref","unstructured":"Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network. In: 2017 International Conference on Engineering and Technology (ICET), pp. 1\u20136. IEEE (2017)","DOI":"10.1109\/ICEngTechnol.2017.8308186"},{"key":"24_CR2","doi-asserted-by":"crossref","unstructured":"Cech, M.: macech at SemEval-2021 task 5: toxic spans detection. In: Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pp. 1003\u20131008 (2021)","DOI":"10.18653\/v1\/2021.semeval-1.137"},{"key":"24_CR3","unstructured":"Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)"},{"key":"24_CR4","doi-asserted-by":"publisher","unstructured":"El\u00a0Sayad, I., Pannu, M., Gourde, J., Al\u00a0Nakshabandi, M.: Third generation neural nets and their applications in multi-modal deep learning: a survey. In: Arai, K. (ed.) FTC 2023. LNNS, vol. 816, pp. 31\u201345. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-47448-4_3","DOI":"10.1007\/978-3-031-47448-4_3"},{"key":"24_CR5","doi-asserted-by":"crossref","unstructured":"Ghosh, S., Lepcha, S., Sakshi, S., Shah, R.R., Umesh, S.: DeToxy: a large-scale multimodal dataset for toxicity classification in spoken utterances. arXiv preprint arXiv:2110.07592 (2021)","DOI":"10.21437\/Interspeech.2022-10752"},{"key":"24_CR6","unstructured":"Hunsberger, E., Eliasmith, C.: Training spiking deep networks for neuromorphic hardware. CoRR, abs\/1611.05141 (2016)"},{"key":"24_CR7","doi-asserted-by":"crossref","unstructured":"Kasabov, N.K.: NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62\u201376 (2014)","DOI":"10.1016\/j.neunet.2014.01.006"},{"key":"24_CR8","doi-asserted-by":"publisher","first-page":"435","DOI":"10.3389\/fnins.2018.00435","volume":"12","author":"C Lee","year":"2018","unstructured":"Lee, C., Panda, P., Srinivasan, G., Roy, K.: Training deep spiking convolutional neural networks with STDP-based unsupervised pre-training followed by supervised fine-tuning. Front. Neurosci. 12, 435 (2018)","journal-title":"Front. Neurosci."},{"key":"24_CR9","doi-asserted-by":"crossref","unstructured":"Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J.: A survey of convolutional neural networks: analysis, applications, and prospects. IEEE Trans. Neural Netw. Learn. Syst. 33, 1\u201321 (2021)","DOI":"10.1109\/TNNLS.2021.3084827"},{"key":"24_CR10","unstructured":"Matsugu, M., Mori, K., Ishii, M., Mitarai, Y.: Convolutional spiking neural network model for robust face detection. In: Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP 2002, vol.\u00a02, pp. 660\u2013664. IEEE (2002)"},{"key":"24_CR11","doi-asserted-by":"crossref","unstructured":"Newmarch, J., Newmarch, J.: FFmpeg\/Libav. Linux sound programming, pp. 227\u2013234 (2017)","DOI":"10.1007\/978-1-4842-2496-0_12"},{"key":"24_CR12","doi-asserted-by":"crossref","unstructured":"Pfeiffer, M., Pfeil, T.: Deep learning with spiking neurons: Opportunities and challenges. Front. Neurosci. 12 (2018)","DOI":"10.3389\/fnins.2018.00774"},{"key":"24_CR13","doi-asserted-by":"publisher","first-page":"12","DOI":"10.3389\/fnins.2017.00682","volume":"11","author":"B Rueckauer","year":"2017","unstructured":"Rueckauer, B., Lungu, I.-A., Yuhuang, H., Pfeiffer, M., Liu, S.-C.: Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Front. Neurosci. 11, 12 (2017)","journal-title":"Front. Neurosci."},{"key":"24_CR14","doi-asserted-by":"crossref","unstructured":"Tavanaei, A., Ghodrati, M., Kheradpisheh, S.R., Masquelier, T., Maida, A.: Deep learning in spiking neural networks. Neural Netw. 111, 47\u201363 (2019)","DOI":"10.1016\/j.neunet.2018.12.002"},{"key":"24_CR15","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"353","DOI":"10.1007\/978-3-030-63836-8_30","volume-title":"Neural Information Processing","author":"RE Turkson","year":"2020","unstructured":"Turkson, R.E., Qu, H., Wang, Y., Eghan, M.J.: Unsupervised multi-layer spiking convolutional neural network using layer-wise sparse coding. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12534, pp. 353\u2013365. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-63836-8_30"},{"key":"24_CR16","doi-asserted-by":"crossref","unstructured":"Yousefi, M., Emmanouilidou, D.: Audio-based toxic language classification using self-attentive convolutional neural network. In: 2021 29th European Signal Processing Conference (EUSIPCO), pp. 11\u201315. IEEE (2021)","DOI":"10.23919\/EUSIPCO54536.2021.9616001"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-62269-4_24","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T14:13:51Z","timestamp":1718892831000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-62269-4_24"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031622687","9783031622694"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-62269-4_24","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"21 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Science and Information Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"London","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 June 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 June 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"sai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/saiconference.com\/Computing","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}