{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T21:03:36Z","timestamp":1726261416738},"publisher-location":"Cham","reference-count":66,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031622687"},{"type":"electronic","value":"9783031622694"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-62269-4_20","type":"book-chapter","created":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T14:02:22Z","timestamp":1718892142000},"page":"278-297","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Cross Approach Between Modern Artificial Intelligence and\u00a0Emergency Medicine: A Review"],"prefix":"10.1007","author":[{"given":"Kokou","family":"Edjinedja","sequence":"first","affiliation":[]},{"given":"Oussama","family":"Barakat","sequence":"additional","affiliation":[]},{"given":"Thibaut","family":"Desmettre","sequence":"additional","affiliation":[]},{"given":"Tania","family":"Marx","sequence":"additional","affiliation":[]},{"given":"Omar","family":"Elfahim","sequence":"additional","affiliation":[]},{"given":"Charlotte","family":"Bredy-Maux","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,21]]},"reference":[{"key":"20_CR1","doi-asserted-by":"publisher","unstructured":"Cowling, T.E., et al.: Access to primary care and visits to emergency departments in England: a cross-sectional, population-based study. PLoS One 8(6), e66699 (2013 ). https:\/\/doi.org\/10.1371\/journal.pone.0066699. PMID: 23776694; PMCID: PMC3680424","DOI":"10.1371\/journal.pone.0066699"},{"key":"20_CR2","doi-asserted-by":"publisher","unstructured":"Paling, S., Lambert, J., Clouting, J., Gonz\u00e1lez-Esquerr\u00e9, J., Auterson, T.: Waiting times in emergency departments: exploring the factors associated with longer patient waits for emergency care in England using routinely collected daily data. Emerg. Med. J. 37(12), 781\u2013786 (2020 ). https:\/\/doi.org\/10.1136\/emermed-2019-208849. PMID: 32933946; PMCID: PMC7691811","DOI":"10.1136\/emermed-2019-208849"},{"key":"20_CR3","unstructured":"Haag, F., Hopf, K., Vasconcelos, P.M., Staake, T.: Augmented cross-selling through explainable AI\u2013a case from energy retailing. arXiv preprint arXiv:2208.11404 (2022)"},{"key":"20_CR4","doi-asserted-by":"crossref","unstructured":"Shoman, M., Aboah, A., Morehead, A., Duan, Y., Daud, A., Adu-Gyamfi, Y.: A region-based deep learning approach to automated retail checkout. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 3210\u20133215 (2022)","DOI":"10.1109\/CVPRW56347.2022.00362"},{"key":"20_CR5","doi-asserted-by":"crossref","unstructured":"Hofmann, M., Neukart, F., B\u00e4ck, T.: Artificial Intelligence and Data Science in the Automotive Industry (2017)","DOI":"10.1007\/978-3-658-16176-7_2"},{"key":"20_CR6","unstructured":"Wen, L., et al.: On the road with GPT-4V (ision): early explorations of visual-language model on autonomous driving. arXiv preprint arXiv:2311.05332 (2023)"},{"key":"20_CR7","unstructured":"Kumbhar, A., Chougale, A., Lokhande, P., Navaghane, S., Burud, A., Nimbalkar, S.: DeepInspect: an AI-powered defect detection for manufacturing industries. arXiv preprint arXiv:2311.03725 (2023)"},{"key":"20_CR8","doi-asserted-by":"crossref","unstructured":"Buehler, M.J.: Generative retrieval-augmented ontologic graph and multi-agent strategies for interpretive large language model-based materials design. arXiv preprint arXiv:2310.19998 (2023)","DOI":"10.1021\/acsengineeringau.3c00058"},{"key":"20_CR9","doi-asserted-by":"publisher","unstructured":"Asha, R.B., Suresh Kumar, K.R.: Credit card fraud detection using artificial neural network. Glob. Transit. Proc. 2(1), 35\u201341 (2021). ISSN 2666-285X. https:\/\/doi.org\/10.1016\/j.gltp.2021.01.006","DOI":"10.1016\/j.gltp.2021.01.006"},{"key":"20_CR10","doi-asserted-by":"publisher","unstructured":"Khandani, A.E., Kim, A.J., Lo, A.W.: Consumer credit-risk models via machine-learning algorithms. J. Bank. Finan. 34(11), 2767\u20132787 (2010). ISSN 0378-4266. https:\/\/doi.org\/10.1016\/j.jbankfin.2010.06.001","DOI":"10.1016\/j.jbankfin.2010.06.001"},{"key":"20_CR11","doi-asserted-by":"publisher","unstructured":"Abdusalomov, A.B., Mukhiddinov, M., Whangbo, T.K.: Brain tumor detection based on deep learning approaches and magnetic resonance imaging. Cancers (Basel) 15(16), 4172 (2023). https:\/\/doi.org\/10.3390\/cancers15164172. PMID: 37627200; PMCID: PMC10453020","DOI":"10.3390\/cancers15164172"},{"key":"20_CR12","doi-asserted-by":"publisher","unstructured":"Talukder, MA.A., et al.: An efficient deep learning model to categorize brain tumor using reconstruction and fine-tuning. Expert Syst. Appl. 230, 120534 (2023). ISSN 0957\u20134174. https:\/\/doi.org\/10.1016\/j.eswa.2023.120534","DOI":"10.1016\/j.eswa.2023.120534"},{"key":"20_CR13","doi-asserted-by":"publisher","first-page":"601","DOI":"10.18280\/ria.340510","volume":"34","author":"HK Kalluri","year":"2020","unstructured":"Kalluri, H.K., Tulasi Krishna, S.: A deep learning method for prediction of cardiovascular disease using convolutional neural network. Revue d intelligence artificielle 34, 601\u2013606 (2020). https:\/\/doi.org\/10.18280\/ria.340510","journal-title":"Revue d intelligence artificielle"},{"issue":"5","key":"20_CR14","doi-asserted-by":"publisher","first-page":"1172","DOI":"10.1109\/TMI.2017.2655486","volume":"36","author":"J Wang","year":"2017","unstructured":"Wang, J., Ding, H., Bidgoli, F.A., et al.: Detecting cardiovascular disease from mammograms with deep learning. IEEE Trans. Med. Imaging 36(5), 1172\u20131181 (2017)","journal-title":"IEEE Trans. Med. Imaging"},{"key":"20_CR15","doi-asserted-by":"publisher","DOI":"10.7717\/peerj-cs.620","volume":"7","author":"A Kumar","year":"2021","unstructured":"Kumar, A., Bhadauria, H.S., Singh, A.: Descriptive analysis of dental X-ray images using various practical methods: A review. PeerJ Comput. Sci. 7, e620 (2021). https:\/\/doi.org\/10.7717\/peerj-cs.620","journal-title":"PeerJ Comput. Sci."},{"key":"20_CR16","doi-asserted-by":"publisher","unstructured":"H\u00eache, F., Barakat, O., Desmettre, T., et al.: Offline reinforcement learning in high-dimensional stochastic environments. Neural Comput. Appl. (2023). https:\/\/doi.org\/10.1007\/s00521-023-09029-3","DOI":"10.1007\/s00521-023-09029-3"},{"key":"20_CR17","doi-asserted-by":"publisher","unstructured":"Benitez, K., Malin, B.: Evaluating re-identification risks with respect to the HIPAA privacy rule. J Am. Med. Inf. Assoc. 17(2), 169\u2013177 (2010). https:\/\/doi.org\/10.1136\/jamia.2009.000026. PMID: 20190059; PMCID: PMC3000773","DOI":"10.1136\/jamia.2009.000026"},{"key":"20_CR18","doi-asserted-by":"publisher","unstructured":"Silva, M.: On the history of discrete event systems. Ann. Rev. Control 45, 213\u2013222 (2018). ISSN 1367\u20135788. https:\/\/doi.org\/10.1016\/j.arcontrol.2018.03.004","DOI":"10.1016\/j.arcontrol.2018.03.004"},{"issue":"1","key":"20_CR19","doi-asserted-by":"publisher","first-page":"31","DOI":"10.2105\/AJPH.93.1.31","volume":"93","author":"VG Rodwin","year":"2003","unstructured":"Rodwin, V.G.: The health care system under French national health insurance: lessons for health reform in the United States. Am. J. Public Health 93(1), 31\u201337 (2003). https:\/\/doi.org\/10.2105\/AJPH.93.1.31","journal-title":"Am. J. Public Health"},{"key":"20_CR20","doi-asserted-by":"publisher","unstructured":"Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., Forghani, R.: Brief history of artificial intelligence. Neuroimaging Clin. N Am. 30(4), 393\u2013399 (2020). https:\/\/doi.org\/10.1016\/j.nic.2020.07.004. PMID: 33038991","DOI":"10.1016\/j.nic.2020.07.004"},{"key":"20_CR21","doi-asserted-by":"publisher","unstructured":"Benko, A., Sik L\u00e1nyi, C.: History of artificial intelligence. In: Mehdi Khosrow-Pour, D.B.A. (ed.) Encyclopedia of Information Science and Technology, 2nd edn., pp. 1759\u20131762. IGI Global (2009). https:\/\/doi.org\/10.4018\/978-1-60566-026-4.ch276","DOI":"10.4018\/978-1-60566-026-4.ch276"},{"issue":"4","key":"20_CR22","doi-asserted-by":"publisher","first-page":"5","DOI":"10.1177\/0008125619864925","volume":"61","author":"M Haenlein","year":"2019","unstructured":"Haenlein, M., Kaplan, A.: A brief history of artificial intelligence: on the past, present, and future of artificial intelligence. Calif. Manag. Rev. 61(4), 5\u201314 (2019)","journal-title":"Calif. Manag. Rev."},{"key":"20_CR23","doi-asserted-by":"publisher","unstructured":"Alzaid, N., et al.: Revolutionizing dental care: a comprehensive review of artificial intelligence applications among various dental specialties. Cureus. 15(10), e47033 (2023). https:\/\/doi.org\/10.7759\/cureus.47033. PMID: 37965397; PMCID: PMC10642940","DOI":"10.7759\/cureus.47033"},{"key":"20_CR24","unstructured":"Shafaf, N., Malek, H.: Applications of machine learning approaches in emergency medicine; a review article. Arch. Acad. Emerg. Med. 7(1), 34 (2019). PMID: 31555764; PMCID: PMC6732202"},{"key":"20_CR25","doi-asserted-by":"publisher","first-page":"273","DOI":"10.1007\/BF00994018","volume":"20","author":"C Cortes","year":"1995","unstructured":"Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273\u2013297 (1995). https:\/\/doi.org\/10.1007\/BF00994018","journal-title":"Mach. Learn."},{"key":"20_CR26","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2012","unstructured":"Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84\u201390 (2012)","journal-title":"Commun. ACM"},{"key":"20_CR27","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436\u2013444 (2015). https:\/\/doi.org\/10.1038\/nature14539","journal-title":"Nature"},{"key":"20_CR28","series-title":"Studies in Big Data","doi-asserted-by":"publisher","first-page":"57","DOI":"10.1007\/978-3-030-33966-1_4","volume-title":"Deep Learning Techniques for Biomedical and Health Informatics","author":"S Mittal","year":"2020","unstructured":"Mittal, S., Hasija, Y.: Applications of deep learning in healthcare and biomedicine. In: Dash, S., Acharya, B.R., Mittal, M., Abraham, A., Kelemen, A. (eds.) Deep Learning Techniques for Biomedical and Health Informatics. SBD, vol. 68, pp. 57\u201377. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-33966-1_4"},{"key":"20_CR29","doi-asserted-by":"publisher","unstructured":"Cunningham, P., Cord, M., Delany, S.J.: Supervised learning. In: Cord, M., Cunningham, P. (eds.) Machine Learning Techniques for Multimedia. Cognitive Technologies. Springer, Heidelberg (2008). https:\/\/doi.org\/10.1007\/978-3-540-75171-7_2","DOI":"10.1007\/978-3-540-75171-7_2"},{"key":"20_CR30","doi-asserted-by":"publisher","unstructured":"Vermeulen, A.F.: Unsupervised learning: using unlabeled data. In: Industrial Machine Learning. Apress, Berkeley (2020). https:\/\/doi.org\/10.1007\/978-1-4842-5316-8_6","DOI":"10.1007\/978-1-4842-5316-8_6"},{"key":"20_CR31","doi-asserted-by":"publisher","first-page":"373","DOI":"10.1007\/s10994-019-05855-6","volume":"109","author":"JE van Engelen","year":"2020","unstructured":"van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109, 373\u2013440 (2020). https:\/\/doi.org\/10.1007\/s10994-019-05855-6","journal-title":"Mach. Learn."},{"key":"20_CR32","doi-asserted-by":"publisher","unstructured":"Coronato, A., Naeem, M., De Pietro, G., Paragliola, G.: Reinforcement learning for intelligent healthcare applications: a survey. Artif. Intell. Med. 109, 101964 (2020). https:\/\/doi.org\/10.1016\/j.artmed.2020.101964. PMID: 34756216","DOI":"10.1016\/j.artmed.2020.101964"},{"key":"20_CR33","doi-asserted-by":"publisher","first-page":"237","DOI":"10.1613\/jair.301","volume":"4","author":"LP Kaelbling","year":"1996","unstructured":"Kaelbling, L.P., et al.: Reinforcement learning: a survey. J. Artif. Intell. Res. 4, 237\u2013285 (1996)","journal-title":"J. Artif. Intell. Res."},{"key":"20_CR34","first-page":"28","volume":"128","author":"A Abdiansah","year":"2015","unstructured":"Abdiansah, A., Wardoyo, R.: Time complexity analysis of support vector machines (SVM) in LibSVM. Int. J. Comput. Appl. 128, 28\u201334 (2015)","journal-title":"Int. J. Comput. Appl."},{"key":"20_CR35","doi-asserted-by":"publisher","unstructured":"Singh, J.: Computational complexity and analysis of supervised machine learning algorithms. In: Kumar, R., Pattnaik, P.K., R. S. Tavares, J.M. (eds.) Next Generation of Internet of Things. Lecture Notes in Networks and Systems, vol. 445, pp. 195\u2013206. Springer, Singapore. https:\/\/doi.org\/10.1007\/978-981-19-1412-6_16","DOI":"10.1007\/978-981-19-1412-6_16"},{"key":"20_CR36","doi-asserted-by":"publisher","unstructured":"Mahesh, B.: Machine learning algorithms -a review (2019). https:\/\/doi.org\/10.21275\/ART20203995","DOI":"10.21275\/ART20203995"},{"key":"20_CR37","doi-asserted-by":"publisher","unstructured":"Myung, I.J. The importance of complexity in model selection. J. Math. Psychol. 44(1), 190\u2013204 (2000). https:\/\/doi.org\/10.1006\/jmps.1999.1283. PMID: 10733864","DOI":"10.1006\/jmps.1999.1283"},{"key":"20_CR38","doi-asserted-by":"publisher","unstructured":"Panch, T., Szolovits, P., Atun, R.: Artificial intelligence, machine learning and health systems. J. Glob. Health. 8(2), 020303 (2018). https:\/\/doi.org\/10.7189\/jogh.08.020303. PMID: 30405904; PMCID: PMC6199467","DOI":"10.7189\/jogh.08.020303"},{"key":"20_CR39","doi-asserted-by":"publisher","unstructured":"Wang, F., Casalino, L.P., Khullar, D.: Deep learning in medicine-promise, progress, and challenges. JAMA Int. Med. 179(3), 293\u2013294 (2019). https:\/\/doi.org\/10.1001\/jamainternmed.2018.7117. PMID: 30556825","DOI":"10.1001\/jamainternmed.2018.7117"},{"key":"20_CR40","doi-asserted-by":"crossref","unstructured":"Wilson, M.H., Habig, K., Wright, C., Hughes, A., Davies, G., Imray, C.H.E.: Pre-hospital emergency medicine. The Lancet 386(10012), 2526\u20132534 (2015). ISSN 0140-6736","DOI":"10.1016\/S0140-6736(15)00985-X"},{"key":"20_CR41","doi-asserted-by":"crossref","unstructured":"Hasan, et al.: Goodacre, Pre-hospital prediction of adverse outcomes in patients with suspected COVID-19: development, application and comparison of machine learning and deep learning methods. Comput. Biol. Med. 151(Part A), 106024 (2022). ISSN 0010-4825,","DOI":"10.1016\/j.compbiomed.2022.106024"},{"key":"20_CR42","doi-asserted-by":"publisher","unstructured":"Tollinton, L., Metcalf, A.M., Velupillai, S.: Enhancing predictions of patient conveyance using emergency call handler free text notes for unconscious and fainting incidents reported to the London Ambulance Service. Int. J. Med. Inf. 141, 104179 (2020 ). https:\/\/doi.org\/10.1016\/j.ijmedinf.2020.104179. PMID: 32663739","DOI":"10.1016\/j.ijmedinf.2020.104179"},{"key":"20_CR43","doi-asserted-by":"publisher","unstructured":"Kim, J.H., Kim, B., Kim, M.J., Hyun, H., Kim, H.C., Chang, H.J.: Prediction of inappropriate pre-hospital transfer of patients with suspected cardiovascular emergency diseases using machine learning: a retrospective observational study. BMC Med. Inf. Decis. Mak. 23(1), 56 (2023). https:\/\/doi.org\/10.1186\/s12911-023-02149-9. PMID: 37024872; PMCID: PMC10080868","DOI":"10.1186\/s12911-023-02149-9"},{"key":"20_CR44","doi-asserted-by":"publisher","unstructured":"Moyer, J.D., et al.: Machine learning-based prediction of emergency neurosurgery within 24 h after moderate to severe traumatic brain injury. World J. Emerg. Surg. 17(1), 42 (2022). https:\/\/doi.org\/10.1186\/s13017-022-00449-5. PMID: 35922831; PMCID: PMC9351267","DOI":"10.1186\/s13017-022-00449-5"},{"key":"20_CR45","unstructured":"Lachance, C.C., Ford, C.: Portable Stroke Detection Devices for Patients with Stroke Symptoms: A Review of Diagnostic Accuracy and Cost-Effectiveness [Internet]. Canadian Agency for Drugs and Technologies in Health, Ottawa (ON) (2019)"},{"key":"20_CR46","doi-asserted-by":"publisher","unstructured":"Blomberg, S.N., et al :Machine learning as a supportive tool to recognize cardiac arrest in emergency calls. Resuscitation 138, 322\u2013329 (2019). ISSN 0300-9572. https:\/\/doi.org\/10.1016\/j.resuscitation.2019.01.015","DOI":"10.1016\/j.resuscitation.2019.01.015"},{"key":"20_CR47","doi-asserted-by":"publisher","unstructured":"Kwon, J.M., Lee, Y., Lee, Y., Lee, S., Park, H., Park, J.: Validation of deep-learning-based triage and acuity score using a large national dataset. PLoS One 13(10), e0205836 (2018). https:\/\/doi.org\/10.1371\/journal.pone.0205836. PMID: 30321231; PMCID: PMC6188844","DOI":"10.1371\/journal.pone.0205836"},{"key":"20_CR48","doi-asserted-by":"publisher","unstructured":"Chang, H., et al.: Clinical support system for triage based on federated learning for the Korea triage and acuity scale. Heliyon 9(8), e19210 (2023). https:\/\/doi.org\/10.1016\/j.heliyon.2023.e19210. PMID: 37654468; PMCID: PMC10465866","DOI":"10.1016\/j.heliyon.2023.e19210"},{"key":"20_CR49","doi-asserted-by":"publisher","unstructured":"Kim, D., Oh, J., Im, H., Yoon, M., Park, J., Lee, J.: Automatic classification of the Korean triage acuity scale in simulated emergency rooms using speech recognition and natural language processing: a proof of concept study. J. Korean Med. Sci. 36(27), e175 (2021). https:\/\/doi.org\/10.3346\/jkms.2021.36.e175. PMID: 34254471; PMCID: PMC8275459","DOI":"10.3346\/jkms.2021.36.e175"},{"key":"20_CR50","doi-asserted-by":"publisher","unstructured":"Yao, L.H., Leung, K.C., Tsai, C.L., Huang, C.H., Fu, L.C.: A novel deep learning-based system for triage in the emergency department using electronic medical records: retrospective cohort study. J. Med. Internet Res. 23(12), e27008 (2021). https:\/\/doi.org\/10.2196\/27008. PMID: 34958305; PMCID: PMC8749584","DOI":"10.2196\/27008"},{"key":"20_CR51","doi-asserted-by":"publisher","unstructured":"Jiang, X., Hu, Z., Wang, S., Zhang, Y.: Deep learning for medical image-based cancer diagnosis. Cancers (Basel) 15(14), 3608 (2023). https:\/\/doi.org\/10.3390\/cancers15143608.PMID: 37509272; PMCID: PMC10377683","DOI":"10.3390\/cancers15143608"},{"key":"20_CR52","doi-asserted-by":"crossref","unstructured":"Amirahmadi, A., Ohlsson, M., Etminani, K.: Deep learning prediction models based on EHR trajectories: a systematic review. J. Biomed. Inf. 144, 104430 (2023). ISSN 1532\u20130464. https:\/\/doi.org\/10.1016\/j.jbi.2023.104430","DOI":"10.1016\/j.jbi.2023.104430"},{"key":"20_CR53","doi-asserted-by":"publisher","unstructured":"Ghazal, T.M., Rehman, A.U., Saleem, M., Ahmad, M., Ahmad, S., Mehmood, F.: Intelligent model to predict early liver disease using machine learning technique. In: 2022 International Conference on Business Analytics for Technology and Security (ICBATS), Dubai, United Arab Emirates, pp. 1\u20135 (2022). https:\/\/doi.org\/10.1109\/ICBATS54253.2022.9758929","DOI":"10.1109\/ICBATS54253.2022.9758929"},{"key":"20_CR54","doi-asserted-by":"publisher","unstructured":"Dinesh, K.G., Arumugaraj, K., Santhosh, K.D., Mareeswari, V.: Prediction of cardiovascular disease using machine learning algorithms. In: 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, India, pp. 1\u20137 (2018). https:\/\/doi.org\/10.1109\/ICCTCT.2018.8550857","DOI":"10.1109\/ICCTCT.2018.8550857"},{"key":"20_CR55","doi-asserted-by":"publisher","first-page":"1112","DOI":"10.1007\/s42452-019-1117-9","volume":"1","author":"R Birjais","year":"2019","unstructured":"Birjais, R., Mourya, A.K., Chauhan, R., et al.: Prediction and diagnosis of future diabetes risk: a machine learning approach. SN Appl. Sci. 1, 1112 (2019). https:\/\/doi.org\/10.1007\/s42452-019-1117-9","journal-title":"SN Appl. Sci."},{"key":"20_CR56","unstructured":"Mammen, P.M.: Federated learning: opportunities and challenges. arXiv preprint arXiv:2101.05428 (2021)"},{"key":"20_CR57","doi-asserted-by":"crossref","unstructured":"Liu, B., et al.: Recent advances on federated learning: a systematic survey. arXiv preprint arXiv:2301.01299 (2023)","DOI":"10.2139\/ssrn.4410417"},{"issue":"4","key":"20_CR58","doi-asserted-by":"publisher","first-page":"791","DOI":"10.1007\/s00778-022-00775-9","volume":"32","author":"SE Whang","year":"2023","unstructured":"Whang, S.E., et al.: Data collection and quality challenges in deep learning: a data-centric AI perspective. VLDB J. 32(4), 791\u2013813 (2023)","journal-title":"VLDB J."},{"key":"20_CR59","doi-asserted-by":"crossref","unstructured":"Liu, Y., et al.: Data quantity governance for machine learning in materials science. Natl. Sci. Rev. (2023). nwad125","DOI":"10.1093\/nsr\/nwad125"},{"key":"20_CR60","unstructured":"Dube, R.: The P versus NP Problem. arXiv e-prints: arXiv-1001 (2010)"},{"key":"20_CR61","unstructured":"Dong, Q., et al.: Large language model for science: a study on P vs. NP. arXiv preprint arXiv:2309.05689 (2023)"},{"key":"20_CR62","unstructured":"Wan, C., Shi, Z.: A proof for P=? NP problem. arXiv preprint arXiv:1005.3010 (2010)"},{"key":"20_CR63","unstructured":"Franz\u00e9n, M.: The P versus NP brief. arXiv preprint arXiv:0709.1207 (2007)"},{"key":"20_CR64","doi-asserted-by":"publisher","first-page":"29","DOI":"10.1016\/j.inffus.2021.07.016","volume":"77","author":"G Yang","year":"2022","unstructured":"Yang, G., Ye, Q., Xia, J.: Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: a mini-review, two showcases and beyond. Inf. Fusion 77, 29\u201352 (2022)","journal-title":"Inf. Fusion"},{"key":"20_CR65","series-title":"Intelligent Systems Reference Library","doi-asserted-by":"publisher","first-page":"357","DOI":"10.1007\/978-3-030-83620-7_15","volume-title":"Handbook of Artificial Intelligence in Healthcare","author":"C Manresa-Yee","year":"2022","unstructured":"Manresa-Yee, C., Roig-Maim\u00f3, M.F., Ramis, S., Mas-Sans\u00f3, R.: Advances in XAI: explanation interfaces in healthcare. In: Lim, C.-P., Chen, Y.-W., Vaidya, A., Mahorkar, C., Jain, L.C. (eds.) Handbook of Artificial Intelligence in Healthcare. ISRL, vol. 212, pp. 357\u2013369. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-030-83620-7_15"},{"key":"20_CR66","unstructured":"Chen, H., et al.: Multi-agent consensus seeking via large language models. arXiv preprint arXiv:2310.20151 (2023)"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-62269-4_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T14:13:24Z","timestamp":1718892804000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-62269-4_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031622687","9783031622694"],"references-count":66,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-62269-4_20","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"21 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Science and Information Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"London","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 June 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 June 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"sai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/saiconference.com\/Computing","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}