{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T21:04:33Z","timestamp":1726261473777},"publisher-location":"Cham","reference-count":30,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031622687"},{"type":"electronic","value":"9783031622694"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-62269-4_16","type":"book-chapter","created":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T14:02:22Z","timestamp":1718892142000},"page":"224-239","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Applying Formal Methods to Elicit Specifications for Grid Data Analysis Applications Using Machine Learning Algorithms"],"prefix":"10.1007","author":[{"given":"Vinitha Hannah","family":"Subburaj","sequence":"first","affiliation":[]},{"given":"Anitha Sarah","family":"Subburaj","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,21]]},"reference":[{"key":"16_CR1","unstructured":"Singh, G., Ganvir, R., P\u00fcschel, M., Vechev, M.: Beyond the single neuron convex barrier for neural network certification (2019)"},{"key":"16_CR2","doi-asserted-by":"crossref","unstructured":"Subburaj, V.H., Urban, J.E.: Intelligent agent software development using AUML and the Descartes specification language. In: 2011 14th IEEE International Symposium on Object\/Component\/Service-Oriented Real-Time Distributed Computing Workshops. IEEE (2011)","DOI":"10.1109\/ISORCW.2011.43"},{"key":"16_CR3","series-title":"Studies in Big Data","doi-asserted-by":"publisher","first-page":"99","DOI":"10.1007\/978-3-319-23742-8_5","volume-title":"Intelligent Agents in Data-intensive Computing","author":"VH Subburaj","year":"2016","unstructured":"Subburaj, V.H., Urban, J.E.: Formal specification language and agent applications. In: Ko\u0142odziej, J., Correia, L., Molina, J.M. (eds.) Intelligent Agents in Data-intensive Computing. SBD, vol. 14, pp. 99\u2013122. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-23742-8_5"},{"key":"16_CR4","doi-asserted-by":"publisher","first-page":"758","DOI":"10.1016\/j.jcp.2015.11.012","volume":"305","author":"EJ Parish","year":"2016","unstructured":"Parish, E.J., Duraisamy, K.: A paradigm for data-driven predictive modeling using field inversion and machine learning. J. Comput. Phys. 305, 758\u2013774 (2016)","journal-title":"J. Comput. Phys."},{"key":"16_CR5","doi-asserted-by":"publisher","DOI":"10.1016\/j.jss.2020.110746","volume":"171","author":"S Bernardi","year":"2021","unstructured":"Bernardi, S., et al.: Security modeling and formal verification of survivability properties: application to cyber\u2013physical systems. J. Syst. Softw. 171, 110746 (2021)","journal-title":"J. Syst. Softw."},{"key":"16_CR6","volume":"36","author":"C Cheligeer","year":"2022","unstructured":"Cheligeer, C., Huang, J., Wu, G., Bhuiyan, N., Xu, Y., Zeng, Y.: Machine learning in requirements elicitation: a literature review. AI EDAM 36, e32 (2022)","journal-title":"AI EDAM"},{"key":"16_CR7","doi-asserted-by":"crossref","unstructured":"Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspectives from data scientists. In: 2019 IEEE 27th International Requirements Engineering Conference Workshops (REW). IEEE (2019)","DOI":"10.1109\/REW.2019.00050"},{"key":"16_CR8","doi-asserted-by":"publisher","first-page":"5454","DOI":"10.1007\/s10664-020-09864-1","volume":"25","author":"S Abualhaija","year":"2020","unstructured":"Abualhaija, S., Arora, C., Sabetzadeh, M., Briand, L.C., Traynor, M.: Automated demarcation of requirements in textual specifications: a machine learning-based approach. Empir. Softw. Eng. 25, 5454\u20135497 (2020)","journal-title":"Empir. Softw. Eng."},{"key":"16_CR9","unstructured":"Urban, C., Min\u00e9, A.: A review of formal methods applied to machine learning. arXiv preprint arXiv:2104.02466 (2021)"},{"key":"16_CR10","doi-asserted-by":"crossref","unstructured":"Krichen, M., et al.: Are formal methods applicable to machine learning and artificial intelligence? In: 2022 2nd International Conference of Smart Systems and Emerging Technologies (SMARTTECH). IEEE (2022)","DOI":"10.1109\/SMARTTECH54121.2022.00025"},{"issue":"19","key":"16_CR11","doi-asserted-by":"publisher","first-page":"17129","DOI":"10.1007\/s00521-022-07363-6","volume":"34","author":"F Adjed","year":"2022","unstructured":"Adjed, F., et al.: Coupling algebraic topology theory, formal methods and safety requirements toward a new coverage metric for artificial intelligence models. Neural Comput. Appl. 34(19), 17129\u201317144 (2022)","journal-title":"Neural Comput. Appl."},{"key":"16_CR12","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1007\/978-3-030-01090-4_2","volume-title":"Automated Technology for Verification and Analysis","author":"SA Seshia","year":"2018","unstructured":"Seshia, S.A., et al.: Formal specification for deep neural networks. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 20\u201334. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-030-01090-4_2"},{"key":"16_CR13","doi-asserted-by":"crossref","unstructured":"Gehr, T., et al.: Ai2: safety and robustness certification of neural networks with abstract interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3\u201318. IEEE (2018)","DOI":"10.1109\/SP.2018.00058"},{"key":"16_CR14","unstructured":"Singh, G., et al.: Fast and effective robustness certification. In: NeurIPS, vol. 1, no. 4, p. 6 (2018)"},{"issue":"POPL","key":"16_CR15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3290354","volume":"3","author":"G Singh","year":"2019","unstructured":"Singh, G., Gehr, T., P\u00fcschel, M., Vechev, M.: An abstract domain for certifying neural networks. Proc. ACM Programm. Lang. 3(POPL), 1\u201330 (2019). https:\/\/doi.org\/10.1145\/3290354","journal-title":"Proc. ACM Programm. Lang."},{"issue":"OOPSLA","key":"16_CR16","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1145\/3428253","volume":"4","author":"C Urban","year":"2020","unstructured":"Urban, C., Christakis, M., W\u00fcstholz, V., Zhang, F.: Perfectly parallel fairness certification of neural networks. Proc. ACM Programm. Lang. 4(OOPSLA), 1\u201330 (2020). https:\/\/doi.org\/10.1145\/3428253","journal-title":"Proc. ACM Programm. Lang."},{"key":"16_CR17","unstructured":"Weng, L., et al.: Towards fast computation of certified robustness for ReLU networks. In: International Conference on Machine Learning, pp. 5276\u20135285. PMLR (2018)"},{"key":"16_CR18","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"65","DOI":"10.1007\/978-3-030-65474-0_4","volume-title":"Static Analysis","author":"M Sotoudeh","year":"2020","unstructured":"Sotoudeh, M., Thakur, A.V.: Abstract neural networks. In: Pichardie, D., Sighireanu, M. (eds.) SAS 2020. LNCS, vol. 12389, pp. 65\u201388. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-65474-0_4"},{"issue":"11","key":"16_CR19","doi-asserted-by":"publisher","first-page":"5777","DOI":"10.1109\/TNNLS.2018.2808470","volume":"29","author":"W Xiang","year":"2018","unstructured":"Xiang, W., et al.: Output reachable set estimation and verification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5777\u20135783 (2018)","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"16_CR20","unstructured":"Wong, E., Kolter, Z.: Provable defenses against adversarial examples via the convex outer adversarial polytope. In: International Conference on Machine Learning, pp. 5286\u20135295. PMLR (2018)"},{"issue":"2","key":"16_CR21","first-page":"3","volume":"1","author":"K Dvijotham","year":"2018","unstructured":"Dvijotham, K., et al.: A dual approach to scalable verification of deep networks. UAI 1(2), 3 (2018)","journal-title":"UAI"},{"key":"16_CR22","unstructured":"Ko, C.-Y., et al.: POPQORN: quantifying robustness of recurrent neural networks. In: International Conference on Machine Learning, pp. 3468\u20133477. PMLR (2019)"},{"key":"16_CR23","unstructured":"Zhang, H., et al.: Verification of recurrent neural networks for cognitive tasks via reachability analysis (2020)"},{"issue":"4","key":"16_CR24","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1109\/45.329294","volume":"13","author":"G Bebis","year":"1994","unstructured":"Bebis, G., Georgiopoulos, M.: Feed-forward neural networks. IEEE Potentials 13(4), 27\u201331 (1994)","journal-title":"IEEE Potentials"},{"key":"16_CR25","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1007\/978-3-030-53288-8_3","volume-title":"Computer Aided Verification","author":"YY Elboher","year":"2020","unstructured":"Elboher, Y.Y., Gottschlich, J., Katz, G.: An abstraction-based framework for neural network verification. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 43\u201365. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-53288-8_3"},{"key":"16_CR26","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"296","DOI":"10.1007\/978-3-030-32304-2_15","volume-title":"Static Analysis","author":"J Li","year":"2019","unstructured":"Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L.: Analyzing deep neural networks with symbolic propagation: towards higher precision and faster verification. In: Chang, B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 296\u2013319. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-32304-2_15"},{"key":"16_CR27","unstructured":"Urban, J.E.: A Specification Language and its Processor. Computer Science Department. University of Southwestern Louisiana (1977)"},{"key":"16_CR28","doi-asserted-by":"crossref","unstructured":"Subburaj, V.H., Urban, J.E.: A formal specification language for modeling agent systems. In: 2013 Second International Conference on Informatics & Applications (ICIA). IEEE (2013)","DOI":"10.1109\/ICoIA.2013.6650273"},{"key":"16_CR29","doi-asserted-by":"crossref","unstructured":"Penn, D., et al.: A predictive tool for grid data analysis using machine learning algorithms. In: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). IEEE (2020)","DOI":"10.1109\/CCWC47524.2020.9031265"},{"issue":"7","key":"16_CR30","doi-asserted-by":"publisher","first-page":"3772","DOI":"10.1109\/TII.2019.2908665","volume":"15","author":"R Sinha","year":"2019","unstructured":"Sinha, R., Patil, S., Gomes, L., Vyatkin, V.: A survey of static formal methods for building dependable industrial automation systems. IEEE Trans. Industr. Inf. 15(7), 3772\u20133783 (2019)","journal-title":"IEEE Trans. Industr. Inf."}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-62269-4_16","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T14:13:01Z","timestamp":1718892781000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-62269-4_16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031622687","9783031622694"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-62269-4_16","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"21 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Science and Information Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"London","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 June 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 June 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"sai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/saiconference.com\/Computing","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}