{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T11:48:03Z","timestamp":1742989683719,"version":"3.40.3"},"publisher-location":"Cham","reference-count":19,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031622687"},{"type":"electronic","value":"9783031622694"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-62269-4_14","type":"book-chapter","created":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T14:02:22Z","timestamp":1718892142000},"page":"202-213","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["DeepFake Detection Using Deep Learning"],"prefix":"10.1007","author":[{"given":"Nazneen","family":"Mansoor","sequence":"first","affiliation":[]},{"given":"Alexander Iliev","family":"Iliev","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,21]]},"reference":[{"key":"14_CR1","doi-asserted-by":"publisher","unstructured":"Nguyen, T.T., et al.: Deep learning for DeepFakes creation and detection: a survey. Comput. Vis. Image Underst. 223, C (2022). https:\/\/doi.org\/10.1016\/j.cviu.2022.103525","DOI":"10.1016\/j.cviu.2022.103525"},{"key":"14_CR2","unstructured":"Khan, S.A., Artusi, A., Dai, H.: Adversarially robust DeepFake media detection using fused convolutional neural network predictions (2021)"},{"key":"14_CR3","doi-asserted-by":"publisher","unstructured":"Vamsi, V.V.V.N.S., et al.: DeepFake detection in digital media forensics. Glob. Transit. Proc. 3(1), 74\u201379 (2022). https:\/\/doi.org\/10.1016\/j.gltp.2022.04.017","DOI":"10.1016\/j.gltp.2022.04.017"},{"key":"14_CR4","doi-asserted-by":"publisher","unstructured":"Wang, X., Huang, J., Ma, S., Nepal, S., Xu, C.: DeepFake disrupter: the detector of DeepFake is my friend. In: 2022 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, pp. 14900\u201314909 (2022). https:\/\/doi.org\/10.1109\/CVPR52688.2022.01450","DOI":"10.1109\/CVPR52688.2022.01450"},{"key":"14_CR5","doi-asserted-by":"publisher","unstructured":"Jafar, M.T., Ababneh, M., Al-Zoube, M., Elhassan, A.: Forensics and analysis of DeepFake videos. In: 2020 11th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, pp. 053\u2013058 (2020). https:\/\/doi.org\/10.1109\/ICICS49469.2020.239493","DOI":"10.1109\/ICICS49469.2020.239493"},{"key":"14_CR6","doi-asserted-by":"publisher","unstructured":"Pokroy, A.A., Egorov, A.D.: EfficientNets for DeepFake detection: comparison of pretrained models. In: 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, Moscow, Russia, pp. 598\u2013600 (2021). https:\/\/doi.org\/10.1109\/ElConRus51938.2021.9396092","DOI":"10.1109\/ElConRus51938.2021.9396092"},{"key":"14_CR7","unstructured":"Rong, I.: Detection and segmentation of DeepFake face images generated by GANs using segmented based CNN, 1 January 2020. https:\/\/esource.dbs.ie\/handle\/10788\/4244"},{"key":"14_CR8","doi-asserted-by":"publisher","unstructured":"R\u00f6ssler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Niessner, M.: FaceForensics++: learning to detect manipulated facial images. In: 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), Seoul, Korea (South), pp. 1\u201311 (2019). https:\/\/doi.org\/10.1109\/ICCV.2019.00009","DOI":"10.1109\/ICCV.2019.00009"},{"key":"14_CR9","doi-asserted-by":"publisher","unstructured":"Xu, Y., Raja, K., Pedersen, M.: Supervised contrastive learning for generalizable and explainable DeepFakes detection. In: 2022 IEEE\/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), Waikoloa, HI, USA, pp. 379\u2013389 (2022). https:\/\/doi.org\/10.1109\/WACVW54805.2022.00044","DOI":"10.1109\/WACVW54805.2022.00044"},{"key":"14_CR10","doi-asserted-by":"publisher","unstructured":"Improving DeepFake Video Detection Using Data Augmentation Techniques | Research Square (n.d.). https:\/\/doi.org\/10.21203\/rs.3.rs-1844392\/v1","DOI":"10.21203\/rs.3.rs-1844392\/v1"},{"key":"14_CR11","unstructured":"DeepFake Technology - Organization for Social Media Safety: Organization for Social Media Safety (n.d.). https:\/\/www.socialmediasafety.org\/advocacy\/deepfake-technology\/"},{"key":"14_CR12","unstructured":"Westerlund, M.: The Emergence of DeepFake Technology: A Review | TIM Review, 1 November 2019. https:\/\/timreview.ca\/article\/1282"},{"key":"14_CR13","unstructured":"What are DeepFakes? How fake AI-powered audio and video warps our perception of reality. Business Insider (n.d.). https:\/\/www.businessinsider.com\/guides\/tech\/what-is-deepfake"},{"key":"14_CR14","unstructured":"Team, G.L.: All You Need to Know About DeepFake AI. Great Learning Blog: Free Resources What Matters to Shape Your Career! 14 May 2021. https:\/\/www.mygreatlearning.com\/blog\/all-you-need-to-know-about-deepfake-ai\/"},{"key":"14_CR15","doi-asserted-by":"publisher","unstructured":"Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: CVAE-GAN: fine-grained image generation through asymmetric training. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, pp. 2764\u20132773 (2017). https:\/\/doi.org\/10.1109\/ICCV.2017.299","DOI":"10.1109\/ICCV.2017.299"},{"key":"14_CR16","unstructured":"Agrawal, R.: An End-to-End Introduction to Generative Adversarial Networks (GANs). Analytics Vidhya, 20 October 2021. https:\/\/www.analyticsvidhya.com\/blog\/2021\/10\/an-end-to-end-introduction-to-generative-adversarial-networksgans\/"},{"key":"14_CR17","unstructured":"Box, B.B.: How DeepFake Technology Impact the People in Our Society? Medium, 3 February 2020. https:\/\/becominghuman.ai\/how-deepfake-technology-impact-the-people-in-our-society-e071df4ffc5c"},{"key":"14_CR18","unstructured":"P.: Inside the Generative Adversarial Networks (GAN) architecture. Medium, 19 November 2019. https:\/\/medium.com\/@Packt_Pub\/inside-the-generative-adversarial-networks-gan-architecture-2435afbd6b3b"},{"key":"14_CR19","doi-asserted-by":"publisher","first-page":"1688","DOI":"10.3390\/s21051688","volume":"21","author":"L Ali","year":"2021","unstructured":"Ali, L., Alnajjar, F., Jassmi, H.A., Gocho, M., Khan, W., Serhani, M.A.: Performance evaluation of deep CNN-based crack detection and localization techniques for concrete structures. Sensors 21, 1688 (2021). https:\/\/doi.org\/10.3390\/s21051688","journal-title":"Sensors"}],"container-title":["Lecture Notes in Networks and Systems","Intelligent Computing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-62269-4_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T14:12:03Z","timestamp":1718892723000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-62269-4_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031622687","9783031622694"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-62269-4_14","relation":{},"ISSN":["2367-3370","2367-3389"],"issn-type":[{"type":"print","value":"2367-3370"},{"type":"electronic","value":"2367-3389"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"21 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"SAI","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Science and Information Conference","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"London","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"United Kingdom","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 June 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"27 June 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"sai2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/saiconference.com\/Computing","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}