{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T20:03:12Z","timestamp":1726257792563},"publisher-location":"Cham","reference-count":17,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031611360"},{"type":"electronic","value":"9783031611377"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-61137-7_27","type":"book-chapter","created":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T07:10:33Z","timestamp":1717053033000},"page":"293-302","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Medium- and Long-Term Wind Speed Prediction Using the\u00a0Multi-task Learning Paradigm"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1929-2408","authenticated-orcid":false,"given":"Antonio M.","family":"G\u00f3mez-Orellana","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0700-275X","authenticated-orcid":false,"given":"V\u00edctor M.","family":"Vargas","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8035-4057","authenticated-orcid":false,"given":"David","family":"Guijo-Rubio","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4456-9886","authenticated-orcid":false,"given":"Jorge","family":"P\u00e9rez-Aracil","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2657-776X","authenticated-orcid":false,"given":"Pedro A.","family":"Guti\u00e9rrez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4048-1676","authenticated-orcid":false,"given":"Sancho","family":"Salcedo-Sanz","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4564-1816","authenticated-orcid":false,"given":"C\u00e9sar","family":"Herv\u00e1s-Mart\u00ednez","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,31]]},"reference":[{"key":"27_CR1","doi-asserted-by":"publisher","DOI":"10.1016\/j.energy.2022.125644","volume":"263","author":"R Ba\u00efle","year":"2023","unstructured":"Ba\u00efle, R., Muzy, J.F.: Leveraging data from nearby stations to improve short-term wind speed forecasts. Energy 263, 125644 (2023)","journal-title":"Energy"},{"key":"27_CR2","doi-asserted-by":"crossref","unstructured":"Bishop, C.M., et\u00a0al.: Neural networks for pattern recognition. Oxford University Press (1995)","DOI":"10.1093\/oso\/9780198538493.001.0001"},{"key":"27_CR3","doi-asserted-by":"crossref","unstructured":"Dorado-Moreno, M., et al.: Multiclass prediction of wind power ramp events combining reservoir computing and support vector machines. In: 17th Conference of the Spanish Association for Artificial Intelligence, pp. 300\u2013309 (2016)","DOI":"10.1007\/978-3-319-44636-3_28"},{"key":"27_CR4","doi-asserted-by":"publisher","DOI":"10.1016\/j.oceaneng.2020.108089","volume":"216","author":"D Guijo-Rubio","year":"2020","unstructured":"Guijo-Rubio, D., G\u00f3mez-Orellana, A.M., Guti\u00e9rrez, P.A., Herv\u00e1s-Mart\u00ednez, C.: Short-and long-term energy flux prediction using multi-task evolutionary artificial neural networks. Ocean Eng. 216, 108089 (2020)","journal-title":"Ocean Eng."},{"issue":"3","key":"27_CR5","doi-asserted-by":"publisher","first-page":"1008","DOI":"10.1016\/j.engappai.2012.10.018","volume":"26","author":"PA Guti\u00e9rrez","year":"2013","unstructured":"Guti\u00e9rrez, P.A., Salcedo-Sanz, S., Herv\u00e1s-Mart\u00ednez, C., Carro-Calvo, L., S\u00e1nchez-Monedero, J., Prieto, L.: Ordinal and nominal classification of wind speed from synoptic pressurepatterns. Eng. Appl. Artif. Intell. 26(3), 1008\u20131015 (2013)","journal-title":"Eng. Appl. Artif. Intell."},{"issue":"15","key":"27_CR6","doi-asserted-by":"publisher","first-page":"3764","DOI":"10.3390\/en13153764","volume":"13","author":"S Hanifi","year":"2020","unstructured":"Hanifi, S., Liu, X., Lin, Z., Lotfian, S.: A critical review of wind power forecasting methods-past, present and future. Energies 13(15), 3764 (2020)","journal-title":"Energies"},{"key":"27_CR7","unstructured":"Hersbach, H., et\u00a0al.: Era5 hourly data on single levels from 1979 to present. Copernicus climate change service (c3s) climate data store (cds) 10(10.24381) (2018)"},{"key":"27_CR8","doi-asserted-by":"crossref","unstructured":"Ishihara, K., Kanervisto, A., Miura, J., Hautamaki, V.: Multi-task learning with attention for end-to-end autonomous driving. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp. 2902\u20132911 (2021)","DOI":"10.1109\/CVPRW53098.2021.00325"},{"key":"27_CR9","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2020.101837","volume":"67","author":"M Islam","year":"2021","unstructured":"Islam, M., Vibashan, V., Lim, C.M., Ren, H.: St-mtl: Spatio-temporal multitask learning model to predict scanpath while tracking instruments in robotic surgery. Med. Image Anal. 67, 101837 (2021)","journal-title":"Med. Image Anal."},{"key":"27_CR10","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1016\/j.renene.2022.12.123","volume":"204","author":"LP Joseph","year":"2023","unstructured":"Joseph, L.P., Deo, R.C., Prasad, R., Salcedo-Sanz, S., Raj, N., Soar, J.: Near real-time wind speed forecast model with bidirectional LSTM networks. Renewable Energy 204, 39\u201358 (2023)","journal-title":"Renewable Energy"},{"issue":"11","key":"27_CR11","doi-asserted-by":"publisher","first-page":"47","DOI":"10.1109\/35.41401","volume":"27","author":"RP Lippmann","year":"1989","unstructured":"Lippmann, R.P.: Pattern classification using neural networks. IEEE Commun. Mag. 27(11), 47\u201350 (1989)","journal-title":"IEEE Commun. Mag."},{"key":"27_CR12","doi-asserted-by":"publisher","DOI":"10.1016\/j.scitotenv.2022.157755","volume":"849","author":"G Msigwa","year":"2022","unstructured":"Msigwa, G., Ighalo, J.O., Yap, P.S.: Considerations on environmental, economic, and energy impacts of wind energy generation: projections towards sustainability initiatives. Sci. Total Environ. 849, 157755 (2022)","journal-title":"Sci. Total Environ."},{"key":"27_CR13","doi-asserted-by":"publisher","first-page":"54","DOI":"10.1016\/j.neunet.2019.01.012","volume":"113","author":"GI Parisi","year":"2019","unstructured":"Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S.: Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54\u201371 (2019)","journal-title":"Neural Netw."},{"key":"27_CR14","doi-asserted-by":"publisher","first-page":"157","DOI":"10.1016\/j.renene.2022.11.042","volume":"201","author":"C Pel\u00e1ez-Rodr\u00edguez","year":"2022","unstructured":"Pel\u00e1ez-Rodr\u00edguez, C., P\u00e9rez-Aracil, J., Fister, D., Prieto-Godino, L., Deo, R., Salcedo-Sanz, S.: A hierarchical classification\/regression algorithm for improving extreme wind speed events prediction. Renew. Energy 201, 157\u2013178 (2022)","journal-title":"Renew. Energy"},{"key":"27_CR15","doi-asserted-by":"publisher","DOI":"10.1016\/j.rser.2023.113189","volume":"179","author":"MAD la Tour","year":"2023","unstructured":"la Tour, M.A.D.: Photovoltaic and wind energy potential in Europe-a systematic review. Renew. Sustain. Energy Rev. 179, 113189 (2023)","journal-title":"Renew. Sustain. Energy Rev."},{"key":"27_CR16","doi-asserted-by":"publisher","first-page":"960","DOI":"10.1016\/j.rser.2016.01.114","volume":"60","author":"J Wang","year":"2016","unstructured":"Wang, J., Song, Y., Liu, F., Hou, R.: Analysis and application of forecasting models in wind power integration: A review of multi-step-ahead wind speed forecasting models. Renew. Sustain. Energy Rev. 60, 960\u2013981 (2016)","journal-title":"Renew. Sustain. Energy Rev."},{"issue":"12","key":"27_CR17","doi-asserted-by":"publisher","first-page":"5586","DOI":"10.1109\/TKDE.2021.3070203","volume":"34","author":"Y Zhang","year":"2021","unstructured":"Zhang, Y., Yang, Q.: A survey on multi-task learning. IEEE Trans. Knowl. Data Eng. 34(12), 5586\u20135609 (2021)","journal-title":"IEEE Trans. Knowl. Data Eng."}],"container-title":["Lecture Notes in Computer Science","Bioinspired Systems for Translational Applications: From Robotics to Social Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-61137-7_27","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T07:16:07Z","timestamp":1717053367000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-61137-7_27"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031611360","9783031611377"],"references-count":17,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-61137-7_27","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"31 May 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"IWINAC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Work-Conference on the Interplay Between Natural and Artificial Computation","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Olh\u00e2o","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portugal","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 May 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 June 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwinac2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iwinac.eu\/iwinac.org\/iwinac2024\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}