{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T20:04:09Z","timestamp":1726257849637},"publisher-location":"Cham","reference-count":16,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031611360"},{"type":"electronic","value":"9783031611377"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-61137-7_26","type":"book-chapter","created":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T07:10:33Z","timestamp":1717053033000},"page":"283-292","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Energy Flux Prediction Using an\u00a0Ordinal Soft Labelling Strategy"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1929-2408","authenticated-orcid":false,"given":"Antonio M.","family":"G\u00f3mez-Orellana","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0700-275X","authenticated-orcid":false,"given":"V\u00edctor M.","family":"Vargas","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2657-776X","authenticated-orcid":false,"given":"Pedro A.","family":"Guti\u00e9rrez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4456-9886","authenticated-orcid":false,"given":"Jorge","family":"P\u00e9rez-Aracil","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4048-1676","authenticated-orcid":false,"given":"Sancho","family":"Salcedo-Sanz","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4564-1816","authenticated-orcid":false,"given":"C\u00e9sar","family":"Herv\u00e1s-Mart\u00ednez","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8035-4057","authenticated-orcid":false,"given":"David","family":"Guijo-Rubio","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,31]]},"reference":[{"key":"26_CR1","doi-asserted-by":"crossref","unstructured":"Ayll\u00f3n-Gavil\u00e1n, R., Guijo-Rubio, D., Guti\u00e9rrez, P.A., Bagnall, A., Herv\u00e1s-Mart\u00ednez, C.: Convolutional and deep learning based techniques for time series ordinal classification. arXiv preprint arXiv:2306.10084 (2023)","DOI":"10.1007\/978-3-031-43078-7_44"},{"key":"26_CR2","doi-asserted-by":"crossref","unstructured":"Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: 9th International Conference on Intelligent Systems Design and Applications, pp. 283\u2013287 (2009)","DOI":"10.1109\/ISDA.2009.230"},{"key":"26_CR3","doi-asserted-by":"crossref","unstructured":"Brodersen, K.H., Ong, C.S., Stephan, K.E., Buhmann, J.M.: The balanced accuracy and its posterior distribution. In: 2010 20th International Conference on Pattern Recognition, pp. 3121\u20133124. IEEE (2010)","DOI":"10.1109\/ICPR.2010.764"},{"key":"26_CR4","doi-asserted-by":"publisher","first-page":"21","DOI":"10.1016\/j.neucom.2013.05.058","volume":"135","author":"M Cruz-Ram\u00edrez","year":"2014","unstructured":"Cruz-Ram\u00edrez, M., Herv\u00e1s-Mart\u00ednez, C., S\u00e1nchez-Monedero, J., Guti\u00e9rrez, P.A.: Metrics to guide a multi-objective evolutionary algorithm for ordinal classification. Neurocomputing 135, 21\u201331 (2014)","journal-title":"Neurocomputing"},{"issue":"5","key":"26_CR5","doi-asserted-by":"publisher","first-page":"750","DOI":"10.1109\/TNN.2010.2041468","volume":"21","author":"JC Fern\u00e1ndez","year":"2010","unstructured":"Fern\u00e1ndez, J.C., Mart\u00ednez, F.J., Herv\u00e1s, C., Guti\u00e9rrez, P.A.: Sensitivity versus accuracy in multiclass problems using memetic pareto evolutionary neural networks. IEEE Trans. Neural Netw. 21(5), 750\u2013770 (2010)","journal-title":"IEEE Trans. Neural Netw."},{"key":"26_CR6","doi-asserted-by":"publisher","first-page":"975","DOI":"10.1016\/j.renene.2021.11.122","volume":"184","author":"A G\u00f3mez-Orellana","year":"2022","unstructured":"G\u00f3mez-Orellana, A., Guijo-Rubio, D., Guti\u00e9rrez, P., Herv\u00e1s-Mart\u00ednez, C.: Simultaneous short-term significant wave height and energy flux prediction using zonal multi-task evolutionary artificial neural networks. Ren Energy 184, 975\u2013989 (2022)","journal-title":"Ren Energy"},{"issue":"2","key":"26_CR7","doi-asserted-by":"publisher","first-page":"468","DOI":"10.3390\/en14020468","volume":"14","author":"AM G\u00f3mez-Orellana","year":"2021","unstructured":"G\u00f3mez-Orellana, A.M., Fern\u00e1ndez, J.C., Dorado-Moreno, M., Guti\u00e9rrez, P.A., Herv\u00e1s-Mart\u00ednez, C.: Building suitable datasets for soft computing and machine learning techniques from meteorological data integration: a case study for predicting significant wave height and energy flux. Energies 14(2), 468 (2021)","journal-title":"Energies"},{"key":"26_CR8","doi-asserted-by":"publisher","DOI":"10.1016\/j.atmosres.2019.104798","volume":"236","author":"D Guijo-Rubio","year":"2020","unstructured":"Guijo-Rubio, D., et al.: Ordinal regression algorithms for the analysis of convective situations over Madrid-Barajas airport. Atmos. Res. 236, 104798 (2020)","journal-title":"Atmos. Res."},{"issue":"1","key":"26_CR9","doi-asserted-by":"publisher","first-page":"127","DOI":"10.1109\/TKDE.2015.2457911","volume":"28","author":"PA Guti\u00e9rrez","year":"2015","unstructured":"Guti\u00e9rrez, P.A., Perez-Ortiz, M., Sanchez-Monedero, J., Fernandez-Navarro, F., Hervas-Martinez, C.: Ordinal regression methods: survey and experimental study. IEEE Trans. Knowl. Data Eng. 28(1), 127\u2013146 (2015)","journal-title":"IEEE Trans. Knowl. Data Eng."},{"issue":"2","key":"26_CR10","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1175\/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2","volume":"82","author":"R Kistler","year":"2001","unstructured":"Kistler, R., et al.: The NCEP-NCAR 50-year reanalysis. Bull. Am. Meteor. Soc. 82(2), 247\u2013267 (2001)","journal-title":"Bull. Am. Meteor. Soc."},{"issue":"7","key":"26_CR11","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1016\/j.neucom.2020.01.025","volume":"388","author":"X Liu","year":"2020","unstructured":"Liu, X., et al.: Unimodal regularized neuron stick-breaking for ordinal classification. Neurocomputing 388(7), 34\u201344 (2020)","journal-title":"Neurocomputing"},{"key":"26_CR12","unstructured":"National Data Buoy Center: National Oceanic and Atmospheric Administration of the USA. http:\/\/www.ndbc.noaa.gov\/ (2023). Accessed 13th Dec 2023"},{"key":"26_CR13","unstructured":"Rennie, J.D., Srebro, N.: Loss functions for preference levels: regression with discrete ordered labels. In: IJCAI Multidisciplinary Workshop on Advances in Preference Handling. vol.\u00a01, pp.\u00a01\u20136. AAAI Press, Menlo Park, CA (2005)"},{"key":"26_CR14","doi-asserted-by":"publisher","first-page":"258","DOI":"10.1016\/j.inffus.2023.01.003","volume":"93","author":"VM Vargas","year":"2023","unstructured":"Vargas, V.M., Guti\u00e9rrez, P.A., Barbero-G\u00f3mez, J., Herv\u00e1s-Mart\u00ednez, C.: Soft labelling based on triangular distributions for ordinal classification. Inform. Fusion 93, 258\u2013267 (2023)","journal-title":"Inform. Fusion"},{"key":"26_CR15","first-page":"1","volume":"122","author":"VM Vargas","year":"2022","unstructured":"Vargas, V.M., Guti\u00e9rrez, P.A., Herv\u00e1s-Mart\u00ednez, C.: Unimodal regularisation based on beta distribution for deep ordinal regression. Pat Recog 122, 1\u201310 (2022)","journal-title":"Pat Recog"},{"key":"26_CR16","doi-asserted-by":"publisher","DOI":"10.1016\/j.compind.2022.103786","volume":"144","author":"VM Vargas","year":"2023","unstructured":"Vargas, V.M., Guti\u00e9rrez, P.A., Rosati, R., Romeo, L., Frontoni, E., Herv\u00e1s-Mart\u00ednez, C.: Deep learning based hierarchical classifier for weapon stock aesthetic quality control assessment. Comput. Ind. 144, 103786 (2023)","journal-title":"Comput. Ind."}],"container-title":["Lecture Notes in Computer Science","Bioinspired Systems for Translational Applications: From Robotics to Social Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-61137-7_26","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,30]],"date-time":"2024-05-30T07:15:54Z","timestamp":1717053354000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-61137-7_26"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031611360","9783031611377"],"references-count":16,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-61137-7_26","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"31 May 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"IWINAC","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Work-Conference on the Interplay Between Natural and Artificial Computation","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Olh\u00e2o","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Portugal","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 May 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"3 June 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"10","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"iwinac2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"http:\/\/iwinac.eu\/iwinac.org\/iwinac2024\/index.html","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}