{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T20:00:56Z","timestamp":1726257656929},"publisher-location":"Cham","reference-count":30,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031606014"},{"type":"electronic","value":"9783031605994"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-60599-4_9","type":"book-chapter","created":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T09:02:09Z","timestamp":1716800529000},"page":"141-157","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Strategies for\u00a0Compressing the\u00a0Pareto Frontier: Application to\u00a0Strategic Planning of\u00a0Hydropower in\u00a0the\u00a0Amazon Basin"],"prefix":"10.1007","author":[{"given":"Zhongdi","family":"Qu","sequence":"first","affiliation":[]},{"given":"Marc","family":"Grimson","sequence":"additional","affiliation":[]},{"given":"Yue","family":"Mao","sequence":"additional","affiliation":[]},{"given":"Sebastian","family":"Heilpern","sequence":"additional","affiliation":[]},{"given":"Imanol","family":"Miqueleiz","sequence":"additional","affiliation":[]},{"given":"Felipe","family":"Pacheco","sequence":"additional","affiliation":[]},{"given":"Alexander","family":"Flecker","sequence":"additional","affiliation":[]},{"given":"Carla P.","family":"Gomes","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,25]]},"reference":[{"issue":"1","key":"9_CR1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-019-12179-5","volume":"10","author":"RM Almeida","year":"2019","unstructured":"Almeida, R.M., et al.: Reducing greenhouse gas emissions of amazon hydropower with strategic dam planning. Nat. Commun. 10(1), 1\u20139 (2019)","journal-title":"Nat. Commun."},{"key":"9_CR2","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"118","DOI":"10.1007\/978-3-540-74970-7_11","volume-title":"Principles and Practice of Constraint Programming \u2013 CP 2007","author":"HR Andersen","year":"2007","unstructured":"Andersen, H.R., Hadzic, T., Hooker, J.N., Tiedemann, P.: A constraint store based on multivalued decision diagrams. In: Bessi\u00e8re, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 118\u2013132. Springer, Heidelberg (2007). https:\/\/doi.org\/10.1007\/978-3-540-74970-7_11"},{"key":"9_CR3","doi-asserted-by":"publisher","unstructured":"Bai, Y., Shi, Q., Grimson, M., Flecker, A., Gomes, C.P.: Efficiently approximating high-dimensional pareto frontiers for tree-structured networks using expansion and compression. In: Cire, A.A. (eds.) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2023. LNCS, vol. 13884, pp. 1\u201317. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-33271-5_1","DOI":"10.1007\/978-3-031-33271-5_1"},{"key":"9_CR4","doi-asserted-by":"publisher","unstructured":"Bergman, D., Cire, A.A.: Multiobjective optimization by decision diagrams. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 86\u201395. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-44953-1_6","DOI":"10.1007\/978-3-319-44953-1_6"},{"key":"9_CR5","doi-asserted-by":"publisher","unstructured":"Cao, Y., Smucker, B.J., Robinson, T.J.: On using the hypervolume indicator to compare pareto fronts: applications to multi-criteria optimal experimental design. J. Stat. Plan. Inference 160, 60\u201374 (2015). https:\/\/doi.org\/10.1016\/j.jspi.2014.12.004, https:\/\/www.sciencedirect.com\/science\/article\/pii\/S0378375814002006","DOI":"10.1016\/j.jspi.2014.12.004"},{"key":"9_CR6","doi-asserted-by":"crossref","unstructured":"Chen, W., Ishibuchi, H., Shang, K.: Clustering-based subset selection in evolutionary multiobjective optimization. In: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 468\u2013475. IEEE (2021)","DOI":"10.1109\/SMC52423.2021.9658582"},{"issue":"4","key":"9_CR7","doi-asserted-by":"publisher","first-page":"577","DOI":"10.1109\/TEVC.2013.2281535","volume":"18","author":"K Deb","year":"2013","unstructured":"Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577\u2013601 (2013)","journal-title":"IEEE Trans. Evol. Comput."},{"issue":"2","key":"9_CR8","doi-asserted-by":"publisher","first-page":"182","DOI":"10.1109\/4235.996017","volume":"6","author":"K Deb","year":"2002","unstructured":"Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182\u2013197 (2002)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"9_CR9","doi-asserted-by":"crossref","unstructured":"Doerr, B., Qu, Z.: A first runtime analysis of the nsga-ii on a multimodal problem. IEEE Transactions on Evolutionary Computation (2023)","DOI":"10.1145\/3583133.3595839"},{"key":"9_CR10","doi-asserted-by":"crossref","unstructured":"Doerr, B., Qu, Z.: From understanding the population dynamics of the nsga-ii to the first proven lower bounds. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a037, pp. 12408\u201312416 (2023)","DOI":"10.1609\/aaai.v37i10.26462"},{"key":"9_CR11","doi-asserted-by":"crossref","unstructured":"Doerr, B., Qu, Z.: Runtime analysis for the nsga-ii: Provable speed-ups from crossover. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol.\u00a037, pp. 12399\u201312407 (2023)","DOI":"10.1609\/aaai.v37i10.26461"},{"issue":"6582","key":"9_CR12","doi-asserted-by":"publisher","first-page":"753","DOI":"10.1126\/science.abj4017","volume":"375","author":"AS Flecker","year":"2022","unstructured":"Flecker, A.S., et al.: Reducing adverse impacts of amazon hydropower expansion. Science 375(6582), 753\u2013760 (2022)","journal-title":"Science"},{"issue":"9","key":"9_CR13","doi-asserted-by":"publisher","first-page":"56","DOI":"10.1145\/3339399","volume":"62","author":"C Gomes","year":"2019","unstructured":"Gomes, C., et al.: Computational sustainability: computing for a better world and a sustainable future. Commun. ACM 62(9), 56\u201365 (2019)","journal-title":"Commun. ACM"},{"key":"9_CR14","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"263","DOI":"10.1007\/978-3-319-93031-2_19","volume-title":"Integration of Constraint Programming, Artificial Intelligence, and Operations Research","author":"JM Gomes-Selman","year":"2018","unstructured":"Gomes-Selman, J.M., Shi, Q., Xue, Y., Garc\u00eda-Villacorta, R., Flecker, A.S., Gomes, C.P.: Boosting efficiency for computing the pareto frontier on tree structured networks. In: van Hoeve, W.-J. (ed.) CPAIOR 2018. LNCS, vol. 10848, pp. 263\u2013279. Springer, Cham (2018). https:\/\/doi.org\/10.1007\/978-3-319-93031-2_19"},{"key":"9_CR15","unstructured":"Grimson, M., et al.: Scaling up pareto optimization for tree structures with affine transformations: Evaluating hybrid floating solar-hydropower systems in the amazon. In: Proceedings of the AAAI Conference on Artificial Intelligence (submitted)"},{"key":"9_CR16","doi-asserted-by":"publisher","unstructured":"Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241\u2013254 (1967). https:\/\/doi.org\/10.1007\/bf02289588, http:\/\/dx.doi.org\/10.1007\/BF02289588","DOI":"10.1007\/bf02289588"},{"key":"9_CR17","doi-asserted-by":"publisher","unstructured":"Murtagh, F., Legendre, P.: Ward\u2019s hierarchical agglomerative clustering method: which algorithms implement ward\u2019s criterion? J. Classif. 31(3), 274\u2013295 (2014). https:\/\/doi.org\/10.1007\/s00357-014-9161-z, http:\/\/dx.doi.org\/10.1007\/s00357-014-9161-z","DOI":"10.1007\/s00357-014-9161-z"},{"key":"9_CR18","doi-asserted-by":"publisher","unstructured":"Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3) (2006). https:\/\/doi.org\/10.1103\/physreve.74.036104, http:\/\/dx.doi.org\/10.1103\/PhysRevE.74.036104","DOI":"10.1103\/physreve.74.036104"},{"key":"9_CR19","doi-asserted-by":"publisher","DOI":"10.1016\/j.envsoft.2020.104902","volume":"135","author":"S Sahraei","year":"2021","unstructured":"Sahraei, S., Asadzadeh, M.: Cluster-based multi-objective optimization for identifying diverse design options: application to water resources problems. Environ. Model. Softw. 135, 104902 (2021)","journal-title":"Environ. Model. Softw."},{"key":"9_CR20","doi-asserted-by":"publisher","unstructured":"Sibson, R.: Slink: an optimally efficient algorithm for the single-link cluster method. Comput. J. 16(1), 30\u201334 (1973). https:\/\/doi.org\/10.1093\/comjnl\/16.1.30, http:\/\/dx.doi.org\/10.1093\/comjnl\/16.1.30","DOI":"10.1093\/comjnl\/16.1.30"},{"key":"9_CR21","doi-asserted-by":"crossref","unstructured":"Sokal, R.R.: Numerical taxonomy. Sci. Am. 215(6), 106\u2013117 (1966). http:\/\/www.jstor.org\/stable\/24931358","DOI":"10.1038\/scientificamerican1266-106"},{"issue":"3","key":"9_CR22","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1162\/evco.1994.2.3.221","volume":"2","author":"N Srinivas","year":"1994","unstructured":"Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221\u2013248 (1994)","journal-title":"Evol. Comput."},{"key":"9_CR23","unstructured":"United Nations General Assembly: Transforming our world: the 2030 agenda for sustainable development (2015). https:\/\/sdgs.un.org\/2030agenda"},{"key":"9_CR24","doi-asserted-by":"publisher","first-page":"27","DOI":"10.1007\/s10676-017-9440-6","volume":"20","author":"P Vamplew","year":"2018","unstructured":"Vamplew, P., Dazeley, R., Foale, C., Firmin, S., Mummery, J.: Human-aligned artificial intelligence is a multiobjective problem. Ethics Inf. Technol. 20, 27\u201340 (2018)","journal-title":"Ethics Inf. Technol."},{"key":"9_CR25","doi-asserted-by":"publisher","unstructured":"Wei, D., Jiang, Q., Wei, Y., Wang, S.: A novel hierarchical clustering algorithm for gene sequences. BMC Bioinform. 13(1) (2012). https:\/\/doi.org\/10.1186\/1471-2105-13-174, http:\/\/dx.doi.org\/10.1186\/1471-2105-13-174","DOI":"10.1186\/1471-2105-13-174"},{"key":"9_CR26","doi-asserted-by":"crossref","unstructured":"Wu, X., et al.: Efficiently approximating the pareto frontier: hydropower dam placement in the amazon basin. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a032 (2018)","DOI":"10.1609\/aaai.v32i1.11347"},{"key":"9_CR27","doi-asserted-by":"crossref","unstructured":"Zhang, H., Song, S., Zhou, A., Gao, X.Z.: A clustering based multiobjective evolutionary algorithm. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 723\u2013730. IEEE (2014)","DOI":"10.1109\/CEC.2014.6900519"},{"issue":"6","key":"9_CR28","doi-asserted-by":"publisher","first-page":"712","DOI":"10.1109\/TEVC.2007.892759","volume":"11","author":"Q Zhang","year":"2007","unstructured":"Zhang, Q., Li, H.: MOEA\/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712\u2013731 (2007)","journal-title":"IEEE Trans. Evol. Comput."},{"key":"9_CR29","doi-asserted-by":"crossref","unstructured":"Zheng, W., Liu, Y., Doerr, B.: A first mathematical runtime analysis of the Non-Dominated Sorting Genetic Algorithm II (NSGA-II). In: Conference on Artificial Intelligence, AAAI 2022. AAAI Press (2022). preprint at https:\/\/arxiv.org\/abs\/2112.08581","DOI":"10.1145\/3520304.3534070"},{"key":"9_CR30","doi-asserted-by":"publisher","first-page":"2557","DOI":"10.1109\/ACCESS.2023.3234226","volume":"11","author":"S Zhou","year":"2023","unstructured":"Zhou, S., et al.: A multi-objective evolutionary algorithm with hierarchical clustering-based selection. IEEE Access 11, 2557\u20132569 (2023)","journal-title":"IEEE Access"}],"container-title":["Lecture Notes in Computer Science","Integration of Constraint Programming, Artificial Intelligence, and Operations Research"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-60599-4_9","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T09:03:28Z","timestamp":1716800608000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-60599-4_9"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031606014","9783031605994"],"references-count":30,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-60599-4_9","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"25 May 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CPAIOR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Uppsala","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sweden","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 May 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 May 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cpaior2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/cpaior2024","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}