{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T02:40:17Z","timestamp":1732070417507,"version":"3.28.0"},"publisher-location":"Cham","reference-count":21,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031606014"},{"type":"electronic","value":"9783031605994"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-60599-4_8","type":"book-chapter","created":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T09:02:09Z","timestamp":1716800529000},"page":"128-140","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Learning Deterministic Surrogates for\u00a0Robust Convex QCQPs"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3432-2123","authenticated-orcid":false,"given":"Egon","family":"Per\u0161ak","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8258-9116","authenticated-orcid":false,"given":"Miguel F.","family":"Anjos","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,25]]},"reference":[{"key":"8_CR1","unstructured":"Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S., Kolter, Z.: Differentiable convex optimization layers. Adv. Neural Inf. Process. Syst. (2019)"},{"key":"8_CR2","unstructured":"Agrawal, A., Barratt, S., Boyd, S., Busseti, E., Moursi, W.M.: Differentiating through a cone program. arXiv preprint arXiv:1904.09043 (2019)"},{"key":"8_CR3","unstructured":"Amos, B., Kolter, J.Z.: Optnet: differentiable optimization as a layer in neural networks. In: International Conference on Machine Learning, pp. 136\u2013145. PMLR (2017)"},{"issue":"3","key":"8_CR4","doi-asserted-by":"publisher","first-page":"628","DOI":"10.1287\/opre.2015.1374","volume":"63","author":"A Ben-Tal","year":"2015","unstructured":"Ben-Tal, A., Hazan, E., Koren, T., Mannor, S.: Oracle-based robust optimization via online learning. Oper. Res. 63(3), 628\u2013638 (2015)","journal-title":"Oper. Res."},{"issue":"4","key":"8_CR5","doi-asserted-by":"publisher","first-page":"769","DOI":"10.1287\/moor.23.4.769","volume":"23","author":"A Ben-Tal","year":"1998","unstructured":"Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Math. Oper. Res. 23(4), 769\u2013805 (1998)","journal-title":"Math. Oper. Res."},{"key":"8_CR6","first-page":"9508","volume":"33","author":"Q Berthet","year":"2020","unstructured":"Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.P., Bach, F.: Learning with differentiable pertubed optimizers. Adv. Neural. Inf. Process. Syst. 33, 9508\u20139519 (2020)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"issue":"3","key":"8_CR7","doi-asserted-by":"publisher","first-page":"464","DOI":"10.1137\/080734510","volume":"53","author":"D Bertsimas","year":"2011","unstructured":"Bertsimas, D., Brown, D.B., Caramanis, C.: Theory and applications of robust optimization. SIAM Rev. 53(3), 464\u2013501 (2011)","journal-title":"SIAM Rev."},{"issue":"2","key":"8_CR8","doi-asserted-by":"publisher","first-page":"449","DOI":"10.1007\/s10589-022-00422-7","volume":"84","author":"A Butler","year":"2023","unstructured":"Butler, A., Kwon, R.H.: Efficient differentiable quadratic programming layers: an ADMM approach. Comput. Optim. Appl. 84(2), 449\u2013476 (2023)","journal-title":"Comput. Optim. Appl."},{"key":"8_CR9","unstructured":"Donti, P., Amos, B., Kolter, J.Z.: Task-based end-to-end model learning in stochastic optimization. Adv. Neural Inf. Process. Syst. 30 (2017)"},{"key":"8_CR10","doi-asserted-by":"crossref","unstructured":"Elmachtoub, A.N., Grigas, P.: Smart predict, then optimize. Manag. Sci. 68(1), 9\u201326 (2022)","DOI":"10.1287\/mnsc.2020.3922"},{"key":"8_CR11","unstructured":"Ferber, A.M., et al.: Surco: learning linear surrogates for combinatorial nonlinear optimization problems. In: International Conference on Machine Learning, pp. 10034\u201310052. PMLR (2023)"},{"key":"8_CR12","first-page":"11341","volume":"35","author":"L Kong","year":"2022","unstructured":"Kong, L., Cui, J., Zhuang, Y., Feng, R., Prakash, B.A., Zhang, C.: End-to-end stochastic optimization with energy-based model. Adv. Neural. Inf. Process. Syst. 35, 11341\u201311354 (2022)","journal-title":"Adv. Neural. Inf. Process. Syst."},{"key":"8_CR13","unstructured":"Kroer, C., Ho-Nguyen, N., Lu, G., K\u0131l\u0131n\u00e7-Karzan, F.: Performance evaluation of iterative methods for solving robust convex quadratic problems. In: 10th NIPS Workshop on Optimization for Machine Learning, Dec. vol.\u00a08 (2017)"},{"issue":"2","key":"8_CR14","doi-asserted-by":"publisher","first-page":"699","DOI":"10.1137\/130933472","volume":"35","author":"E Mengi","year":"2014","unstructured":"Mengi, E., Yildirim, E.A., Kilic, M.: Numerical optimization of eigenvalues of hermitian matrix functions. SIAM J. Matrix Anal. Appl. 35(2), 699\u2013724 (2014)","journal-title":"SIAM J. Matrix Anal. Appl."},{"key":"8_CR15","doi-asserted-by":"crossref","unstructured":"Nesterov, Y., Nemirovskii, A.: Interior-point polynomial algorithms in convex programming. SIAM (1994)","DOI":"10.1137\/1.9781611970791"},{"key":"8_CR16","doi-asserted-by":"crossref","unstructured":"Sadana, U., Chenreddy, A., Delage, E., Forel, A., Frejinger, E., Vidal, T.: A survey of contextual optimization methods for decision making under uncertainty. arXiv preprint arXiv:2306.10374 (2023)","DOI":"10.1016\/j.ejor.2024.03.020"},{"key":"8_CR17","doi-asserted-by":"crossref","unstructured":"Schutte, N., Postek, K., Yorke-Smith, N.: Robust losses for decision-focused learning. arXiv preprint arXiv:2310.04328 (2023)","DOI":"10.24963\/ijcai.2024\/538"},{"key":"8_CR18","unstructured":"Sun, H., Shi, Y., Wang, J., Tuan, H.D., Poor, H.V., Tao, D.: Alternating differentiation for optimization layers. arXiv preprint arXiv:2210.01802 (2022)"},{"key":"8_CR19","unstructured":"Vlastelica, M., Paulus, A., Musil, V., Martius, G., Rol\u00ednek, M.: Differentiation of blackbox combinatorial solvers. In: International Conference on Learning Representations. ICLR\u201920, May 2020. https:\/\/openreview.net\/forum?id=BkevoJSYPB"},{"key":"8_CR20","unstructured":"Wang, P.W., Donti, P., Wilder, B., Kolter, Z.: Satnet: bridging deep learning and logical reasoning using a differentiable satisfiability solver. In: International Conference on Machine Learning, pp. 6545\u20136554. PMLR (2019)"},{"key":"8_CR21","doi-asserted-by":"crossref","unstructured":"Wilder, B., Dilkina, B., Tambe, M.: Melding the data-decisions pipeline: decision-focused learning for combinatorial optimization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a033, pp. 1658\u20131665 (2019)","DOI":"10.1609\/aaai.v33i01.33011658"}],"container-title":["Lecture Notes in Computer Science","Integration of Constraint Programming, Artificial Intelligence, and Operations Research"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-60599-4_8","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T02:21:28Z","timestamp":1732069288000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-60599-4_8"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031606014","9783031605994"],"references-count":21,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-60599-4_8","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"25 May 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"CPAIOR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Uppsala","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sweden","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 May 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 May 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cpaior2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/cpaior2024","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}