{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T05:46:08Z","timestamp":1732081568751,"version":"3.28.0"},"publisher-location":"Cham","reference-count":19,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031606014"},{"type":"electronic","value":"9783031605994"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-60599-4_15","type":"book-chapter","created":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T09:02:09Z","timestamp":1716800529000},"page":"234-242","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Learning from\u00a0Scenarios for\u00a0Repairable Stochastic Scheduling"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0009-0001-7540-980X","authenticated-orcid":false,"given":"Kim","family":"van den Houten","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5153-9087","authenticated-orcid":false,"given":"David M. J.","family":"Tax","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0009-0001-6992-2869","authenticated-orcid":false,"given":"Esteban","family":"Freydell","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0470-6241","authenticated-orcid":false,"given":"Mathijs","family":"de Weerdt","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,25]]},"reference":[{"key":"15_CR1","doi-asserted-by":"publisher","DOI":"10.1515\/9781400831050","volume-title":"Robust Optimization","author":"A Ben-Tal","year":"2009","unstructured":"Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization, 1st edn. Princeton University Press, Princeton (2009)","edition":"1"},{"key":"15_CR2","unstructured":"Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J.P., Bach, F.: Learning with differentiable pertubed optimizers. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in neural information processing systems 2020, vol.\u00a033, pp. 9508\u20139519. The MIT Press (2020)"},{"issue":"3","key":"15_CR3","doi-asserted-by":"publisher","first-page":"1025","DOI":"10.1287\/mnsc.2018.3253","volume":"66","author":"D Bertsimas","year":"2019","unstructured":"Bertsimas, D., Kallus, N.: From predictive to prescriptive analytics. Manage. Sci. 66(3), 1025\u20131044 (2019)","journal-title":"Manage. Sci."},{"key":"15_CR4","unstructured":"Cplex, IBM ILOG: V12. 1: User\u2019s manual for cplex. International Business Machines Corporation 46(53), 157 (2009)"},{"key":"15_CR5","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"241","DOI":"10.1007\/978-3-030-19212-9_16","volume-title":"Integration of Constraint Programming, Artificial Intelligence, and Operations Research","author":"E Demirovi\u0107","year":"2019","unstructured":"Demirovi\u0107, E., et al.: An investigation into prediction\u00a0+\u00a0optimisation for the Knapsack problem. In: Rousseau, L.-M., Stergiou, K. (eds.) CPAIOR 2019. LNCS, vol. 11494, pp. 241\u2013257. Springer, Cham (2019). https:\/\/doi.org\/10.1007\/978-3-030-19212-9_16"},{"issue":"1","key":"15_CR6","doi-asserted-by":"publisher","first-page":"9","DOI":"10.1287\/mnsc.2020.3922","volume":"68","author":"A Elmachtoub","year":"2022","unstructured":"Elmachtoub, A., Grigas, P.: Smart \u201cpredict, then optimize\u2019\u2019. Manage. Sci. 68(1), 9\u201326 (2022)","journal-title":"Manage. Sci."},{"issue":"10","key":"15_CR7","doi-asserted-by":"publisher","first-page":"75","DOI":"10.1145\/84537.84552","volume":"33","author":"PW Glynn","year":"1990","unstructured":"Glynn, P.W.: Likelihood ratio gradient estimation for stochastic systems. Commun. ACM 33(10), 75\u201384 (1990). https:\/\/doi.org\/10.1145\/84537.84552","journal-title":"Commun. ACM"},{"key":"15_CR8","doi-asserted-by":"crossref","unstructured":"van\u00a0den Houten, K.: Learning from scenarios for repairable stochastic scheduling (2023). https:\/\/github.com\/kimvandenhouten\/Learning-From-Scenarios-for-Repairable-Stochastic-Scheduling","DOI":"10.1007\/978-3-031-60599-4_15"},{"key":"15_CR9","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"264","DOI":"10.1007\/978-3-031-33271-5_18","volume-title":"Integration of Constraint Programming, Artificial Intelligence, and Operations Research","author":"X Hu","year":"2023","unstructured":"Hu, X., Lee, J.C.H., Lee, J.H.M.: Branch and learn with post-hoc correction for predict+optimize with unknown parameters in constraints. In: Cire, A.A. (ed.) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. LNCS, vol. 13884, pp. 264\u2013280. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-33271-5_18"},{"key":"15_CR10","unstructured":"Hu, X., Lee, J.C.H., Lee, J.H.M.: Predict+optimize for packing and covering LPs with unknown parameters in constraints. arXiv 2209.03668 (2022)"},{"key":"15_CR11","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1016\/S0377-2217(96)00170-1","volume":"96","author":"R Kolisch","year":"1996","unstructured":"Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling problem library. Eur. J. Oper. Res. 96, 205\u2013216 (1996)","journal-title":"Eur. J. Oper. Res."},{"key":"15_CR12","doi-asserted-by":"crossref","unstructured":"Mandi, J., Demirovi\u0107, E., Stuckey, P., Guns, T.: Smart predict-and-optimize for hard combinatorial optimization problems. In: Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI-20 (2020)","DOI":"10.1609\/aaai.v34i02.5521"},{"key":"15_CR13","unstructured":"Mandi, J., et al.: Decision-focused learning: Foundations, state of the art, benchmark and future opportunities. arXiv 2307.13565 (2023)"},{"key":"15_CR14","unstructured":"Matloff, N.: Introduction to Discrete-Event Simulation and the SimPy Language (2008)"},{"issue":"1","key":"15_CR15","first-page":"5183","volume":"21","author":"S Mohamed","year":"2020","unstructured":"Mohamed, S., Rosca, M., Figurnov, M., Mnih, A.: Monte Carlo gradient estimation in machine learning. J. Mach. Learn. Res. 21(1), 5183\u20135244 (2020)","journal-title":"J. Mach. Learn. Res."},{"key":"15_CR16","doi-asserted-by":"crossref","unstructured":"Ruszczy\u0144ski, A., Shapiro, A.: Stochastic Programming, Handbook in Operations Research and Management Science. publisher (2003)","DOI":"10.1016\/S0927-0507(03)10001-1"},{"key":"15_CR17","unstructured":"Silvestri, M., et al.: Score function gradient estimation to widen the applicability of decision-focused learning. arXiv 2307.05213 (2023)"},{"key":"15_CR18","volume-title":"Reinforcement Learning: An Introduction","author":"R Sutton","year":"2018","unstructured":"Sutton, R., Barto, A.: Reinforcement Learning: An Introduction, 2nd edn. The MIT Press, Cambridge (2018)","edition":"2"},{"key":"15_CR19","doi-asserted-by":"publisher","first-page":"229","DOI":"10.1007\/BF00992696","volume":"8","author":"RJ Williams","year":"1992","unstructured":"Williams, R.J.: Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 8, 229\u2013256 (1992)","journal-title":"Mach. Learn."}],"container-title":["Lecture Notes in Computer Science","Integration of Constraint Programming, Artificial Intelligence, and Operations Research"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-60599-4_15","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T02:21:46Z","timestamp":1732069306000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-60599-4_15"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031606014","9783031605994"],"references-count":19,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-60599-4_15","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"25 May 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"The authors have no competing interests to declare that are relevant to the content of this article.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Disclosure of Interests"}},{"value":"CPAIOR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Uppsala","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sweden","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 May 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 May 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cpaior2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/cpaior2024","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}