{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T20:00:57Z","timestamp":1726257657645},"publisher-location":"Cham","reference-count":38,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031606014"},{"type":"electronic","value":"9783031605994"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-60599-4_10","type":"book-chapter","created":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T09:02:09Z","timestamp":1716800529000},"page":"158-175","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Improving Metaheuristic Efficiency for\u00a0Stochastic Optimization by Sequential Predictive Sampling"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8499-6578","authenticated-orcid":false,"given":"Noah","family":"Schutte","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4028-3725","authenticated-orcid":false,"given":"Krzysztof","family":"Postek","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1814-3515","authenticated-orcid":false,"given":"Neil","family":"Yorke-Smith","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,5,25]]},"reference":[{"key":"10_CR1","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1007\/s10479-015-2019-x","volume":"240","author":"S Amaran","year":"2016","unstructured":"Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms and applications. Ann. Oper. Res. 240, 351\u2013380 (2016). https:\/\/doi.org\/10.1007\/s10479-015-2019-x","journal-title":"Ann. Oper. Res."},{"key":"10_CR2","doi-asserted-by":"publisher","first-page":"200","DOI":"10.1287\/ijoc.2017.0774","volume":"30","author":"RC Ball","year":"2018","unstructured":"Ball, R.C., Branke, J., Meisel, S.: Optimal sampling for simulated annealing under noise. INFORMS J. Comput. 30, 200\u2013215 (2018). https:\/\/doi.org\/10.1287\/ijoc.2017.0774","journal-title":"INFORMS J. Comput."},{"key":"10_CR3","doi-asserted-by":"publisher","first-page":"153","DOI":"10.1007\/s10951-007-0012-1","volume":"10","author":"F Ballest\u00edn","year":"2007","unstructured":"Ballest\u00edn, F.: When it is worthwhile to work with the stochastic RCPSP? J. Sched. 10, 153\u2013166 (2007). https:\/\/doi.org\/10.1007\/s10951-007-0012-1","journal-title":"J. Sched."},{"key":"10_CR4","doi-asserted-by":"publisher","first-page":"459","DOI":"10.1111\/j.1937-5956.2009.01023.x","volume":"18","author":"F Ballest\u00edn","year":"2009","unstructured":"Ballest\u00edn, F., Leus, R.: Resource-constrained project scheduling for timely project completion with stochastic activity durations. Prod. Oper. Manag. 18, 459\u2013474 (2009). https:\/\/doi.org\/10.1111\/j.1937-5956.2009.01023.x","journal-title":"Prod. Oper. Manag."},{"key":"10_CR5","series-title":"Operations Research\/Computer Science Interfaces Series","doi-asserted-by":"publisher","first-page":"261","DOI":"10.1007\/978-0-387-71921-4_14","volume-title":"Metaheuristics","author":"T Bartz-Beielstein","year":"2007","unstructured":"Bartz-Beielstein, T., Blum, D., Branke, J.: Particle swarm optimization and sequential sampling in noisy environments. In: Doerner, K.F., Gendreau, M., Greistorfer, P., Gutjahr, W., Hartl, R.F., Reimann, M. (eds.) Metaheuristics. ORSIS, vol. 39, pp. 261\u2013273. Springer, Boston, MA (2007). https:\/\/doi.org\/10.1007\/978-0-387-71921-4_14"},{"issue":"3731","key":"10_CR6","doi-asserted-by":"publisher","first-page":"34","DOI":"10.1126\/science.153.3731.34","volume":"153","author":"R Bellman","year":"1966","unstructured":"Bellman, R.: Dynamic programming. Science 153(3731), 34\u201337 (1966). https:\/\/doi.org\/10.1126\/science.153.3731.34","journal-title":"Science"},{"key":"10_CR7","doi-asserted-by":"publisher","first-page":"239","DOI":"10.1007\/s11047-008-9098-4","volume":"8","author":"L Bianchi","year":"2009","unstructured":"Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on metaheuristics for stochastic combinatorial optimization. Nat. Comput. 8, 239\u2013287 (2009). https:\/\/doi.org\/10.1007\/s11047-008-9098-4","journal-title":"Nat. Comput."},{"key":"10_CR8","doi-asserted-by":"publisher","unstructured":"Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York (2011). https:\/\/doi.org\/10.1007\/978-1-4614-0237-4","DOI":"10.1007\/978-1-4614-0237-4"},{"key":"10_CR9","doi-asserted-by":"publisher","unstructured":"Bouneffouf, D., Rish, I., Aggarwal, C.: Survey on applications of multi-armed and contextual bandits. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp.\u00a01\u20138. (2020). https:\/\/doi.org\/10.1109\/CEC48606.2020.9185782","DOI":"10.1109\/CEC48606.2020.9185782"},{"key":"10_CR10","doi-asserted-by":"publisher","unstructured":"Bulgak, A.A., Sanders, J.L.: Integrating a modified simulated annealing algorithm with the simulation of a manufacturing system to optimize buffer sizes in automatic assembly systems. In: 1988 Winter Simulation Conference Proceedings, pp. 684\u2013690. (1988). https:\/\/doi.org\/10.1109\/WSC.1988.716241","DOI":"10.1109\/WSC.1988.716241"},{"key":"10_CR11","doi-asserted-by":"publisher","first-page":"957","DOI":"10.1016\/j.ejor.2018.04.025","volume":"270","author":"Z Chen","year":"2018","unstructured":"Chen, Z., Demeulemeester, E., Bai, S., Guo, Y.: Efficient priority rules for the stochastic resource-constrained project scheduling problem. Eur. J. Oper. Res. 270, 957\u2013967 (2018). https:\/\/doi.org\/10.1016\/j.ejor.2018.04.025","journal-title":"Eur. J. Oper. Res."},{"key":"10_CR12","doi-asserted-by":"publisher","unstructured":"Dumouchelle, J., Julien, E., Kurtz, J., Khalil, E.B.: Neur2ro: neural two-stage robust optimization. arXiv preprint (2023). https:\/\/doi.org\/10.48550\/ARXIV.2310.04345","DOI":"10.48550\/ARXIV.2310.04345"},{"key":"10_CR13","doi-asserted-by":"publisher","unstructured":"Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall\/CRC, Boca Raton (1995). https:\/\/doi.org\/10.1201\/9780429258411","DOI":"10.1201\/9780429258411"},{"key":"10_CR14","doi-asserted-by":"publisher","unstructured":"Groves, M., Branke, J.: Sequential sampling for noisy optimisation with CMA-ES. In: Proceedings of the 2018 Genetic and Evolutionary Computation Conference, pp. 1023\u20131030. Association for Computing Machinery, Inc., (2018). https:\/\/doi.org\/10.1145\/3205455.3205559","DOI":"10.1145\/3205455.3205559"},{"key":"10_CR15","doi-asserted-by":"publisher","first-page":"62","DOI":"10.1016\/j.orp.2015.03.001","volume":"2","author":"AA Juan","year":"2015","unstructured":"Juan, A.A., Faulin, J., Grasman, S.E., Rabe, M., Figueira, G.: A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper. Res. Perspect. 2, 62\u201372 (2015). https:\/\/doi.org\/10.1016\/j.orp.2015.03.001","journal-title":"Oper. Res. Perspect."},{"key":"10_CR16","doi-asserted-by":"publisher","DOI":"10.1007\/s10479-021-04142-9","author":"AA Juan","year":"2021","unstructured":"Juan, A.A., et al.: A review of the role of heuristics in stochastic optimisation: from metaheuristics to learnheuristics. Ann. Oper. Res. (2021). https:\/\/doi.org\/10.1007\/s10479-021-04142-9","journal-title":"Ann. Oper. Res."},{"key":"10_CR17","doi-asserted-by":"publisher","first-page":"671","DOI":"10.1126\/science.220.4598.671","volume":"220","author":"S Kirkpatrick","year":"1983","unstructured":"Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671\u2013680 (1983). https:\/\/doi.org\/10.1126\/science.220.4598.671","journal-title":"Science"},{"key":"10_CR18","doi-asserted-by":"publisher","first-page":"479","DOI":"10.1137\/S1052623499363220","volume":"12","author":"AJ Kleywegt","year":"2001","unstructured":"Kleywegt, A.J., Shapiro, A., Homem-de-mello, T.: The sample average approximation method for stochastic discrete optimization. Soc. Ind. Appl. Math. 12, 479\u2013502 (2001). https:\/\/doi.org\/10.1137\/S1052623499363220","journal-title":"Soc. Ind. Appl. Math."},{"key":"10_CR19","doi-asserted-by":"publisher","first-page":"205","DOI":"10.1016\/S0377-2217(96)00170-1","volume":"96","author":"S Kolisch","year":"1996","unstructured":"Kolisch, S.: Psplib a project scheduling problem library. Eur. J. Oper. Res. 96, 205\u2013216 (1996). https:\/\/doi.org\/10.1016\/S0377-2217(96)00170-1","journal-title":"Eur. J. Oper. Res."},{"key":"10_CR20","doi-asserted-by":"publisher","unstructured":"Kolisch, R., Hartmann, S.: Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis. In: Weglarz, J. (eds.) Project Scheduling. International Series in Operations Research & Management Science, LNCS, vol. 14, pp. 147\u2013178. Springer, Boston, MA (1999). https:\/\/doi.org\/10.1007\/978-1-4615-5533-9_7","DOI":"10.1007\/978-1-4615-5533-9_7"},{"key":"10_CR21","doi-asserted-by":"publisher","unstructured":"Lattimore, T., Szepesv\u00e1ri, C.: Bandit Algorithms. Cambridge University Press, Cambridge (2020). https:\/\/doi.org\/10.1017\/9781108571401","DOI":"10.1017\/9781108571401"},{"key":"10_CR22","doi-asserted-by":"publisher","first-page":"1775","DOI":"10.1016\/j.cor.2011.02.007","volume":"38","author":"H Lei","year":"2011","unstructured":"Lei, H., Laporte, G., Guo, B.: The capacitated vehicle routing problem with stochastic demands and time windows. Comput. Oper. Res. 38, 1775\u20131783 (2011). https:\/\/doi.org\/10.1016\/j.cor.2011.02.007","journal-title":"Comput. Oper. Res."},{"key":"10_CR23","doi-asserted-by":"publisher","first-page":"1735","DOI":"10.1111\/poms.13012","volume":"28","author":"N Liu","year":"2019","unstructured":"Liu, N., Truong, V.A., Wang, X., Anderson, B.R.: Integrated scheduling and capacity planning with considerations for patients\u2019 length-of-stays. Prod. Oper. Manag. 28, 1735\u20131756 (2019). https:\/\/doi.org\/10.1111\/poms.13012","journal-title":"Prod. Oper. Manag."},{"key":"10_CR24","doi-asserted-by":"publisher","first-page":"642","DOI":"10.1016\/j.ejor.2010.03.014","volume":"206","author":"D Min","year":"2010","unstructured":"Min, D., Yih, Y.: Scheduling elective surgery under uncertainty and downstream capacity constraints. Eur. J. Oper. Res. 206, 642\u2013652 (2010). https:\/\/doi.org\/10.1016\/j.ejor.2010.03.014","journal-title":"Eur. J. Oper. Res."},{"key":"10_CR25","doi-asserted-by":"publisher","first-page":"411","DOI":"10.1002\/nav.21496","volume":"59","author":"AA Prudius","year":"2012","unstructured":"Prudius, A.A., Andrad\u00f3ttir, S.: Averaging frameworks for simulation optimization with applications to simulated annealing. Nav. Res. Logist. 59, 411\u2013429 (2012). https:\/\/doi.org\/10.1002\/nav.21496","journal-title":"Nav. Res. Logist."},{"key":"10_CR26","doi-asserted-by":"publisher","first-page":"1667","DOI":"10.1007\/s11831-020-09432-2","volume":"28","author":"I Rahimi","year":"2021","unstructured":"Rahimi, I., Gandomi, A.H.: A comprehensive review and analysis of operating room and surgery scheduling. Arch. Comput. Methods Eng. 28, 1667\u20131688 (2021). https:\/\/doi.org\/10.1007\/s11831-020-09432-2","journal-title":"Arch. Comput. Methods Eng."},{"key":"10_CR27","doi-asserted-by":"publisher","first-page":"215","DOI":"10.1080\/00207543.2015.1043403","volume":"54","author":"U Ritzinger","year":"2016","unstructured":"Ritzinger, U., Puchinger, J., Hartl, R.F.: A survey on dynamic and stochastic vehicle routing problems. Int. J. Prod. Res. 54, 215\u2013231 (2016). https:\/\/doi.org\/10.1080\/00207543.2015.1043403","journal-title":"Int. J. Prod. Res."},{"key":"10_CR28","doi-asserted-by":"publisher","first-page":"349","DOI":"10.1007\/s10951-016-0505-x","volume":"21","author":"S Rostami","year":"2018","unstructured":"Rostami, S., Creemers, S., Leus, R.: New strategies for stochastic resource-constrained project scheduling. J. Sched. 21, 349\u2013365 (2018). https:\/\/doi.org\/10.1007\/s10951-016-0505-x","journal-title":"J. Sched."},{"key":"10_CR29","doi-asserted-by":"publisher","unstructured":"Saliby, E.: Descriptive sampling: a better approach to Monte Carlo simulation. Source J. Oper. Res. Soc. 41, 1133\u20131142 (1990). https:\/\/doi.org\/10.2307\/2583110","DOI":"10.2307\/2583110"},{"key":"10_CR30","unstructured":"Schutte, N.: Codebase experiments sequential predictive sampling. https:\/\/github.com\/NoahJSchutte\/sequential-predictive-sampling. Accessed 21 Mar 2024"},{"key":"10_CR31","unstructured":"Schutte, N., van\u00a0den Houten, K., Eigbe, E.: Dynamic scenario reduction for simulation based optimization under uncertainty, working notes of the data science meets optimisation workshop at IJCAI 2022. https:\/\/drive.google.com\/file\/d\/1kxzgO8ZhW2bjXo1vwVskK4_5LNRbp5vj\/view?usp=sharing. Accessed 21 Mar 2024"},{"key":"10_CR32","doi-asserted-by":"publisher","DOI":"10.1016\/j.advengsoft.2023.103411","volume":"178","author":"A Seyyedabbasi","year":"2023","unstructured":"Seyyedabbasi, A.: A reinforcement learning-based metaheuristic algorithm for solving global optimization problems. Adv. Eng. Softw. 178, 103411 (2023). https:\/\/doi.org\/10.1016\/j.advengsoft.2023.103411","journal-title":"Adv. Eng. Softw."},{"key":"10_CR33","doi-asserted-by":"publisher","unstructured":"Shehadeh, K.S.: Data-driven distributionally robust surgery planning in flexible operating rooms over a wasserstein ambiguity. Comput. Oper. Res. 146 (2022). https:\/\/doi.org\/10.1016\/j.cor.2022.105927","DOI":"10.1016\/j.cor.2022.105927"},{"key":"10_CR34","unstructured":"Shehadeh, K.S., Zuluaga, L.F.: 14th AIMMS-MOPTA optimization modeling competition 2022: surgery scheduling in flexible operating rooms under uncertainty. https:\/\/iccopt2022.lehigh.edu\/ competition-and-prizes\/aimms-mopta-competition\/. Accessed 21 Mar 2024"},{"key":"10_CR35","doi-asserted-by":"publisher","first-page":"254","DOI":"10.1287\/opre.35.2.254","volume":"35","author":"MM Solomon","year":"1987","unstructured":"Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 35, 254\u2013265 (1987). https:\/\/doi.org\/10.1287\/opre.35.2.254","journal-title":"Oper. Res."},{"key":"10_CR36","unstructured":"Vajda, S.: Mathematical Programming. Courier Corporation, Chelmsford (2009)"},{"key":"10_CR37","doi-asserted-by":"publisher","first-page":"1543","DOI":"10.1016\/j.renene.2019.07.081","volume":"145","author":"A Zakaria","year":"2020","unstructured":"Zakaria, A., Ismail, F.B., Lipu, M.S., Hannan, M.A.: Uncertainty models for stochastic optimization in renewable energy applications. Renew. Energy 145, 1543\u20131571 (2020). https:\/\/doi.org\/10.1016\/j.renene.2019.07.081","journal-title":"Renew. Energy"},{"key":"10_CR38","doi-asserted-by":"publisher","first-page":"757","DOI":"10.1007\/s10878-018-0322-6","volume":"37","author":"S Zhu","year":"2019","unstructured":"Zhu, S., Fan, W., Yang, S., Pei, J., Pardalos, P.M.: Operating room planning and surgical case scheduling: a review of literature. J. Comb. Optim. 37, 757\u2013805 (2019). https:\/\/doi.org\/10.1007\/s10878-018-0322-6","journal-title":"J. Comb. Optim."}],"container-title":["Lecture Notes in Computer Science","Integration of Constraint Programming, Artificial Intelligence, and Operations Research"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-60599-4_10","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T09:03:31Z","timestamp":1716800611000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-60599-4_10"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031606014","9783031605994"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-60599-4_10","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"25 May 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"CPAIOR","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Uppsala","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sweden","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"28 May 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"31 May 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"21","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"cpaior2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/sites.google.com\/view\/cpaior2024","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}