{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,26]],"date-time":"2025-03-26T22:02:20Z","timestamp":1743026540704,"version":"3.40.3"},"publisher-location":"Cham","reference-count":40,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031604867"},{"type":"electronic","value":"9783031604874"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-60487-4_14","type":"book-chapter","created":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T01:02:20Z","timestamp":1717203740000},"page":"179-193","update-policy":"https:\/\/doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Automating Mobile App Review User Feedback with\u00a0Aspect-Based Sentiment Analysis"],"prefix":"10.1007","author":[{"ORCID":"https:\/\/orcid.org\/0009-0000-4611-399X","authenticated-orcid":false,"given":"Vasileios","family":"Ballas","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5943-6613","authenticated-orcid":false,"given":"Konstantinos","family":"Michalakis","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3611-8292","authenticated-orcid":false,"given":"Georgios","family":"Alexandridis","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9884-935X","authenticated-orcid":false,"given":"George","family":"Caridakis","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,6,1]]},"reference":[{"doi-asserted-by":"publisher","unstructured":"Anastasiei, I.D., Georgescu, M.R., Cuza, A.I.: Automated vs manual content analysis\u2014a retrospective look. Sci. Ann. Econ. Bus. 67(SI), 57\u201367 (2020). https:\/\/doi.org\/10.47743\/saeb-2020-0025","key":"14_CR1","DOI":"10.47743\/saeb-2020-0025"},{"key":"14_CR2","doi-asserted-by":"publisher","first-page":"101217","DOI":"10.1016\/j.csl.2021.101217","volume":"69","author":"\u0141 Augustyniak","year":"2021","unstructured":"Augustyniak, \u0141, Kajdanowicz, T., Kazienko, P.: Comprehensive analysis of aspect term extraction methods using various text embeddings. Comput. Speech Lang. 69, 101217 (2021). https:\/\/doi.org\/10.1016\/j.csl.2021.101217","journal-title":"Comput. Speech Lang."},{"key":"14_CR3","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"221","DOI":"10.1007\/978-3-030-44429-7_16","volume-title":"Requirements Engineering: Foundation for Software Quality","author":"F Dalpiaz","year":"2020","unstructured":"Dalpiaz, F., Sturm, A.: Conceptualizing requirements using user stories and use cases: a controlled experiment. In: Madhavji, N., Pasquale, L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 221\u2013238. Springer, Cham (2020). https:\/\/doi.org\/10.1007\/978-3-030-44429-7_16"},{"doi-asserted-by":"publisher","unstructured":"Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding, May 2019. https:\/\/doi.org\/10.48550\/arXiv.1810.04805","key":"14_CR4","DOI":"10.48550\/arXiv.1810.04805"},{"issue":"4","key":"14_CR5","doi-asserted-by":"publisher","first-page":"265","DOI":"10.1177\/0256090917732442","volume":"42","author":"C Fernandez","year":"2017","unstructured":"Fernandez, C.: The paradox of choice: why more is less. Vikalpa 42(4), 265\u2013267 (2017). https:\/\/doi.org\/10.1177\/0256090917732442","journal-title":"Vikalpa"},{"doi-asserted-by":"publisher","unstructured":"Hastie, T., Tibshirani, R., Friedman, J.: Model assessment and selection. In: Hastie, T., Tibshirani, R., Friedman, J. (eds.) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, pp. 219\u2013259. Springer Series in Statistics. Springer, Cham (2009). https:\/\/doi.org\/10.1007\/978-0-387-84858-7_7","key":"14_CR6","DOI":"10.1007\/978-0-387-84858-7_7"},{"unstructured":"Hugging Face: Models, December 2023. https:\/\/huggingface.co\/models","key":"14_CR7"},{"doi-asserted-by":"crossref","unstructured":"Jelodar, H., et al.: Latent Dirichlet Allocation (LDA) and topic modeling: models, applications, a survey, December 2018","key":"14_CR8","DOI":"10.1007\/s11042-018-6894-4"},{"doi-asserted-by":"publisher","unstructured":"Kim, Y.: Convolutional neural networks for sentence classification, September 2014. https:\/\/doi.org\/10.48550\/arXiv.1408.5882","key":"14_CR9","DOI":"10.48550\/arXiv.1408.5882"},{"doi-asserted-by":"publisher","unstructured":"Kirange, D.K., Deshmukh, R.R.: Emotion classification of restaurant and laptop review dataset: SemEval 2014 Task 4. Int. J. Comput. Appl. 113(6), 17\u201320 (2015). https:\/\/doi.org\/10.5120\/19829-1680","key":"14_CR10","DOI":"10.5120\/19829-1680"},{"doi-asserted-by":"publisher","unstructured":"Li, C., Xu, B., Wu, G., He, S., Tian, G., Hao, H.: Recursive deep learning for sentiment analysis over social data. In: 2014 IEEE\/WIC\/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol.\u00a02, pp. 180\u2013185, August 2014. https:\/\/doi.org\/10.1109\/WI-IAT.2014.96","key":"14_CR11","DOI":"10.1109\/WI-IAT.2014.96"},{"issue":"2","key":"14_CR12","doi-asserted-by":"publisher","first-page":"236","DOI":"10.1080\/10864415.2016.1087823","volume":"20","author":"TP Liang","year":"2015","unstructured":"Liang, T.P., Li, X., Yang, C.T., Wang, M.: What in consumer reviews affects the sales of mobile apps: a multifacet sentiment analysis approach. Int. J. Electron. Commer. 20(2), 236\u2013260 (2015). https:\/\/doi.org\/10.1080\/10864415.2016.1087823","journal-title":"Int. J. Electron. Commer."},{"doi-asserted-by":"publisher","unstructured":"Liu, B.: Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies. Springer, Cham (2012). https:\/\/doi.org\/10.1007\/978-3-031-02145-9","key":"14_CR13","DOI":"10.1007\/978-3-031-02145-9"},{"doi-asserted-by":"publisher","unstructured":"Liu, Y., et al.: RoBERTa: a robustly optimized BERT pretraining approach, July 2019. https:\/\/doi.org\/10.48550\/arXiv.1907.11692","key":"14_CR14","DOI":"10.48550\/arXiv.1907.11692"},{"doi-asserted-by":"publisher","unstructured":"L\u00f3pez, M.I.C., Cervantes, A.L.E., Mart\u00ednez, G.d.l.C., Arjona, J.L.O.: Agile, user-centered design and quality in software processes for mobile application development teaching. Int. J. Softw. Eng. Appl. 14(5), 01\u201317 (2023). https:\/\/doi.org\/10.5121\/ijsea.2023.14501","key":"14_CR15","DOI":"10.5121\/ijsea.2023.14501"},{"doi-asserted-by":"publisher","unstructured":"McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. In: Bower, G.H. (ed.) Psychology of Learning and Motivation, vol.\u00a024, pp. 109\u2013165. Academic Press, January 1989. https:\/\/doi.org\/10.1016\/S0079-7421(08)60536-8","key":"14_CR16","DOI":"10.1016\/S0079-7421(08)60536-8"},{"unstructured":"Mingyu, J.: Google Play Scraper for Python, January 2024","key":"14_CR17"},{"issue":"2","key":"14_CR18","doi-asserted-by":"publisher","first-page":"845","DOI":"10.1109\/TAFFC.2020.2970399","volume":"13","author":"A Nazir","year":"2022","unstructured":"Nazir, A., Rao, Y., Wu, L., Sun, L.: Issues and challenges of aspect-based sentiment analysis: a comprehensive survey. IEEE Trans. Affect. Comput. 13(2), 845\u2013863 (2022). https:\/\/doi.org\/10.1109\/TAFFC.2020.2970399","journal-title":"IEEE Trans. Affect. Comput."},{"issue":"2","key":"14_CR19","doi-asserted-by":"publisher","first-page":"367","DOI":"10.1109\/TSE.2019.2893171","volume":"47","author":"E Noei","year":"2021","unstructured":"Noei, E., Zhang, F., Zou, Y.: Too many user-reviews! What should app developers look at first? IEEE Trans. Software Eng. 47(2), 367\u2013378 (2021). https:\/\/doi.org\/10.1109\/TSE.2019.2893171","journal-title":"IEEE Trans. Software Eng."},{"unstructured":"Norman, D.A.: The Design of Everyday Things. MIT Press, Cambridge (2013)","key":"14_CR20"},{"doi-asserted-by":"publisher","unstructured":"Palomba, F., et al.: User reviews matter! Tracking crowdsourced reviews to support evolution of successful apps. In: 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME), pp. 291\u2013300, September 2015. https:\/\/doi.org\/10.1109\/ICSM.2015.7332475","key":"14_CR21","DOI":"10.1109\/ICSM.2015.7332475"},{"doi-asserted-by":"crossref","unstructured":"Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment Classification using Machine Learning Techniques, May 2002","key":"14_CR22","DOI":"10.3115\/1118693.1118704"},{"unstructured":"Papers with Code: Aspect-Based Sentiment Analysis (ABSA). https:\/\/paperswithcode.com\/task\/aspect-based-sentiment-analysis","key":"14_CR23"},{"unstructured":"Papers with Code: ASTE Benchmark (Aspect-Based Sentiment Analysis (ABSA)). https:\/\/paperswithcode.com\/sota\/aspect-based-sentiment-analysis-absa-on-aste","key":"14_CR24"},{"doi-asserted-by":"publisher","unstructured":"Peng, B., et al.: Few-shot natural language generation for task-oriented dialog, February 2020. https:\/\/doi.org\/10.48550\/arXiv.2002.12328","key":"14_CR25","DOI":"10.48550\/arXiv.2002.12328"},{"issue":"05","key":"14_CR26","doi-asserted-by":"publisher","first-page":"8600","DOI":"10.1609\/aaai.v34i05.6383","volume":"34","author":"H Peng","year":"2020","unstructured":"Peng, H., Xu, L., Bing, L., Huang, F., Lu, W., Si, L.: Knowing what, how and why: a near complete solution for aspect-based sentiment analysis. Proc. AAAI Conf. Artif. Intell. 34(05), 8600\u20138607 (2020). https:\/\/doi.org\/10.1609\/aaai.v34i05.6383","journal-title":"Proc. AAAI Conf. Artif. Intell."},{"doi-asserted-by":"publisher","unstructured":"Pontiki, M., Galanis, D., Pavlopoulos, J., Papageorgiou, H., Androutsopoulos, I., Manandhar, S.: SemEval-2014 Task 4: aspect based sentiment analysis. In: Nakov, P., Zesch, T. (eds.) Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), pp. 27\u201335. Association for Computational Linguistics, Dublin, Ireland, August 2014. https:\/\/doi.org\/10.3115\/v1\/S14-2004","key":"14_CR27","DOI":"10.3115\/v1\/S14-2004"},{"doi-asserted-by":"publisher","unstructured":"Rajaraman, A., Ullman, J.D.: Data mining. In: Mining of Massive Datasets, pp. 1\u201317. Cambridge University Press, October 2011. https:\/\/doi.org\/10.1017\/CBO9781139058452.002","key":"14_CR28","DOI":"10.1017\/CBO9781139058452.002"},{"unstructured":"Rathi, P.: Google Play Store Reviews (2021). https:\/\/www.kaggle.com\/datasets\/prakharrathi25\/google-play-store-reviews","key":"14_CR29"},{"unstructured":"razorclicks: The Top 5 Factors for a Review to be marked Most Relevant|Local Reviews, June 2019. https:\/\/localsearchforum.com\/threads\/the-top-5-factors-for-a-review-to-be-marked-most-relevant.54376\/","key":"14_CR30"},{"issue":"3","key":"14_CR31","doi-asserted-by":"publisher","first-page":"426","DOI":"10.1057\/s41270-022-00171-w","volume":"11","author":"H S\u00e4llberg","year":"2023","unstructured":"S\u00e4llberg, H., Wang, S., Numminen, E.: The combinatory role of online ratings and reviews in mobile app downloads: an empirical investigation of gaming and productivity apps from their initial app store launch. J. Mark. Analytics 11(3), 426\u2013442 (2023). https:\/\/doi.org\/10.1057\/s41270-022-00171-w","journal-title":"J. Mark. Analytics"},{"doi-asserted-by":"publisher","unstructured":"Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter, February 2020. https:\/\/doi.org\/10.48550\/arXiv.1910.01108","key":"14_CR32","DOI":"10.48550\/arXiv.1910.01108"},{"doi-asserted-by":"publisher","unstructured":"Scaria, K., Gupta, H., Goyal, S., Sawant, S.A., Mishra, S., Baral, C.: InstructABSA: instruction learning for aspect based sentiment analysis, November 2023. https:\/\/doi.org\/10.48550\/arXiv.2302.08624","key":"14_CR33","DOI":"10.48550\/arXiv.2302.08624"},{"doi-asserted-by":"publisher","unstructured":"Sun, C., Huang, L., Qiu, X.: Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence, March 2019. https:\/\/doi.org\/10.48550\/arXiv.1903.09588","key":"14_CR34","DOI":"10.48550\/arXiv.1903.09588"},{"doi-asserted-by":"publisher","unstructured":"van Oordt, S., Guzman, E.: On the role of user feedback in software evolution: a practitioners\u2019 perspective. In: 2021 IEEE 29th International Requirements Engineering Conference (RE), pp. 221\u2013232, September 2021. https:\/\/doi.org\/10.1109\/RE51729.2021.00027","key":"14_CR35","DOI":"10.1109\/RE51729.2021.00027"},{"key":"14_CR36","doi-asserted-by":"publisher","first-page":"178","DOI":"10.1016\/j.neucom.2021.03.100","volume":"455","author":"X Wang","year":"2021","unstructured":"Wang, X., Xu, G., Zhang, Z., Jin, L., Sun, X.: End-to-end aspect-based sentiment analysis with hierarchical multi-task learning. Neurocomputing 455, 178\u2013188 (2021). https:\/\/doi.org\/10.1016\/j.neucom.2021.03.100","journal-title":"Neurocomputing"},{"doi-asserted-by":"publisher","unstructured":"Xu, H., Liu, B., Shu, L., Yu, P.S.: BERT post-training for review reading comprehension and aspect-based sentiment analysis, May 2019. https:\/\/doi.org\/10.48550\/arXiv.1904.02232","key":"14_CR37","DOI":"10.48550\/arXiv.1904.02232"},{"doi-asserted-by":"publisher","unstructured":"Yang, A., et al.: Enhancing pre-trained language representations with rich knowledge for machine reading comprehension. In: Korhonen, A., Traum, D., M\u00e0rquez, L. (eds.) Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2346\u20132357. Association for Computational Linguistics, Florence, Italy, July 2019. https:\/\/doi.org\/10.18653\/v1\/P19-1226","key":"14_CR38","DOI":"10.18653\/v1\/P19-1226"},{"issue":"3","key":"14_CR39","doi-asserted-by":"publisher","first-page":"463","DOI":"10.1016\/j.ipm.2018.12.004","volume":"56","author":"C Yang","year":"2019","unstructured":"Yang, C., Zhang, H., Jiang, B., Li, K.: Aspect-based sentiment analysis with alternating coattention networks. Inf. Process. Manage. 56(3), 463\u2013478 (2019). https:\/\/doi.org\/10.1016\/j.ipm.2018.12.004","journal-title":"Inf. Process. Manage."},{"doi-asserted-by":"crossref","unstructured":"Yang, H., Zhang, C., Li, K.: PyABSA: a modularized framework for reproducible aspect-based sentiment analysis, August 2023","key":"14_CR40","DOI":"10.1145\/3583780.3614752"}],"container-title":["Lecture Notes in Computer Science","Human-Centered Design, Operation and Evaluation of Mobile Communications"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-60487-4_14","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,1]],"date-time":"2024-06-01T01:48:45Z","timestamp":1717206525000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-60487-4_14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031604867","9783031604874"],"references-count":40,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-60487-4_14","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"1 June 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"HCII","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Conference on Human-Computer Interaction","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Washington DC","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"USA","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"29 June 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"4 July 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"hcii2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/2024.hci.international\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}