{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T19:08:25Z","timestamp":1726254505469},"publisher-location":"Cham","reference-count":38,"publisher":"Springer Nature Switzerland","isbn-type":[{"type":"print","value":"9783031585463"},{"type":"electronic","value":"9783031585470"}],"license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2024]]},"DOI":"10.1007\/978-3-031-58547-0_20","type":"book-chapter","created":{"date-parts":[[2024,4,15]],"date-time":"2024-04-15T19:02:10Z","timestamp":1713207730000},"page":"242-253","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":0,"title":["Automatically Detecting Political Viewpoints in\u00a0Norwegian Text"],"prefix":"10.1007","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9440-5847","authenticated-orcid":false,"given":"Tu My","family":"Doan","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0189-4718","authenticated-orcid":false,"given":"David","family":"Baumgartner","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3206-5154","authenticated-orcid":false,"given":"Benjamin","family":"Kille","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9806-7961","authenticated-orcid":false,"given":"Jon Atle","family":"Gulla","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2024,4,16]]},"reference":[{"key":"20_CR1","series-title":"LNCS","doi-asserted-by":"publisher","first-page":"271","DOI":"10.1007\/978-3-031-35320-8_19","volume-title":"Natural Language Processing and Information Systems","author":"M Borovikova","year":"2023","unstructured":"Borovikova, M., Ferr\u00e9, A., Bossy, R., Roche, M., N\u00e9dellec, C.: Could Keyword Masking Strategy Improve Language Model? In: M\u00e9tais, E., Meziane, F., Sugumaran, V., Manning, W., Reiff-Marganiec, S. (eds.) NLDB 2023. LNCS, vol. 13913, pp. 271\u2013284. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-35320-8_19"},{"unstructured":"Chin-Yew, L.: Looking for a Few Good Metrics: ROUGE and its Evaluation. In: Proceedings of the 4th NTCIR Workshops (2004)","key":"20_CR2"},{"unstructured":"Djemili, S., Longhi, J., Marinica, C., Kotzinos, D., Sarfati, G.E.: What does Twitter have to say about Ideology? In: NLP 4 CMC: Natural Language Processing for Computer-Mediated Communication\/Social Media-Pre-conference Workshop at Konvens 2014. vol.\u00a01. Universit\u00e4tsverlag Hildesheim (2014)","key":"20_CR3"},{"doi-asserted-by":"publisher","unstructured":"Doan, T.M., Gulla, J.A.: A survey on political viewpoints identification. Online Soc. Networks Media 30 (2022). https:\/\/doi.org\/10.1016\/j.osnem.2022.100208","key":"20_CR4","DOI":"10.1016\/j.osnem.2022.100208"},{"doi-asserted-by":"publisher","unstructured":"Doan, T.M., Kille, B., Gulla, J.A.: Using language models for classifying the party affiliation of political texts. In: Rosso, P., Basile, V., Mart\u00ednez, R., M\u00e8tais, E., Meziane, F. (eds.) NLDB. LNCS, pp. 382\u2013393. Springer, Cham (2022). https:\/\/doi.org\/10.1007\/978-3-031-08473-7_35","key":"20_CR5","DOI":"10.1007\/978-3-031-08473-7_35"},{"doi-asserted-by":"publisher","unstructured":"Doan, T.M., Kille, B., Gulla, J.A.: SP-BERT: a language model for political text in scandinavian languages. In: Metais, E., Meziane, F., Sugumaran, V., Manning, W., Reiff-Marganiec, S. (eds.) NLDB 2023. LNCS, vol. 13913, pp. 467\u2013477. Springer, Cham (2023). https:\/\/doi.org\/10.1007\/978-3-031-35320-8_34","key":"20_CR6","DOI":"10.1007\/978-3-031-35320-8_34"},{"doi-asserted-by":"publisher","unstructured":"Golchin, S., Surdeanu, M., Tavabi, N., Kiapour, A.: Do not mask randomly: effective domain-adaptive pre-training by masking in-domain keywords. In: Can, B., et al. (eds.) RepL4NLP. ACL (2023). https:\/\/doi.org\/10.18653\/v1\/2023.repl4nlp-1.2","key":"20_CR7","DOI":"10.18653\/v1\/2023.repl4nlp-1.2"},{"doi-asserted-by":"publisher","unstructured":"Hardalov, M., Arora, A., Nakov, P., Augenstein, I.: Cross-domain label-adaptive stance detection. In: Moens, M.F., Huang, X., Specia, L., Yih, S.W.T. (eds.) CEMNLP. ACL (2021). https:\/\/doi.org\/10.18653\/v1\/2021.emnlp-main.710","key":"20_CR8","DOI":"10.18653\/v1\/2021.emnlp-main.710"},{"doi-asserted-by":"crossref","unstructured":"Hardalov, M., Arora, A., Nakov, P., Augenstein, I.: Few-shot cross-lingual stance detection with sentiment-based pre-training. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol.\u00a036 (2022)","key":"20_CR9","DOI":"10.1609\/aaai.v36i10.21318"},{"doi-asserted-by":"publisher","unstructured":"Hu, Y., et al.: ConfliBERT: a pre-trained language model for political conflict and violence. In: NAACL. ACL (2022). https:\/\/doi.org\/10.18653\/v1\/2022.naacl-main.400","key":"20_CR10","DOI":"10.18653\/v1\/2022.naacl-main.400"},{"unstructured":"Hvingelby, R., Pauli, A.B., Barrett, M., Rosted, C., Lidegaard, L.M., S\u00f8gaard, A.: DaNE: a named entity resource for Danish. In: Proceedings of the 12th Language Resources and Evaluation Conference, pp. 4597\u20134604 (2020)","key":"20_CR11"},{"doi-asserted-by":"publisher","unstructured":"Iyyer, M., Enns, P., Boyd-Graber, J., Resnik, P.: Political ideology detection using recursive neural networks. ACL 1 (2014). https:\/\/doi.org\/10.3115\/v1\/P14-1105","key":"20_CR12","DOI":"10.3115\/v1\/P14-1105"},{"doi-asserted-by":"publisher","unstructured":"Kannangara, S.: Mining Twitter for fine-grained political opinion polarity classification, ideology detection and sarcasm detection. In: WSDM. ACM (2018). https:\/\/doi.org\/10.1145\/3159652.3170461","key":"20_CR13","DOI":"10.1145\/3159652.3170461"},{"unstructured":"Kummervold, P.E., Wetjen, F., De\u00a0la Rosa, J.: The NORWEGIAN colossal corpus: a text corpus for training large norwegian language models. In: LREC. European Language Resources Association (2022)","key":"20_CR14"},{"unstructured":"Kummervold, P.E., De\u00a0la Rosa, J., Wetjen, F., Brygfjeld, S.A.: Operationalizing a national digital library: the case for a Norwegian transformer model. In: NoDaLiDa (2021)","key":"20_CR15"},{"unstructured":"Kutuzov, A., Barnes, J., Velldal, E., \u00d8vrelid, L., Oepen, S.: Large-scale contextualised language modelling for Norwegian. In: NoDaLiDa. Link\u00f6ping University Electronic Press, Sweden (2021)","key":"20_CR16"},{"doi-asserted-by":"publisher","unstructured":"Lapponi, E., S\u00f8yland, M.G., Velldal, E., Oepen, S.: The Talk of Norway: a richly annotated corpus of the Norwegian parliament, 1998\u20132016. LREC, pp. 1\u201321 (2018). https:\/\/doi.org\/10.1007\/s10579-018-9411-5","key":"20_CR17","DOI":"10.1007\/s10579-018-9411-5"},{"doi-asserted-by":"crossref","unstructured":"Lin, W.H., Wilson, T., Wiebe, J., Hauptmann, A.: Which side are you on? IDENTIFYING perspectives at the document and sentence Levels. In: CoNLL-X. ACL (2006)","key":"20_CR18","DOI":"10.3115\/1596276.1596297"},{"key":"20_CR19","doi-asserted-by":"publisher","first-page":"726","DOI":"10.1162\/tacl_a_00343","volume":"8","author":"Y Liu","year":"2020","unstructured":"Liu, Y., et al.: Multilingual denoising pre-training for neural machine translation. Trans. Assoc. Comput. Linguistics 8, 726\u2013742 (2020)","journal-title":"Trans. Assoc. Comput. Linguistics"},{"doi-asserted-by":"publisher","unstructured":"Liu, Y., Zhang, X.F., Wegsman, D., Beauchamp, N., Wang, L.: POLITICS: pretraining with same-story article comparison for ideology prediction and stance detection. In: Findings of the Association for Computational Linguistics: NAACL 2022. ACL (2022). https:\/\/doi.org\/10.18653\/v1\/2022.findings-naacl.101","key":"20_CR20","DOI":"10.18653\/v1\/2022.findings-naacl.101"},{"unstructured":"Maager\u00f8, E. and Simonsen, B.: Norway: Society and Culture. Cappelen Damm Akademisk, 3rd edn. (2022)","key":"20_CR21"},{"unstructured":"Malmsten, M., B\u00f6rjeson, L., Haffenden, C.: Playing with Words at the National Library of Sweden - Making a Swedish BERT. CoRR abs\/2007.01658 (2020). https:\/\/arxiv.org\/abs\/2007.01658","key":"20_CR22"},{"unstructured":"Menini, S., Tonelli, S.: Agreement and disagreement: comparison of points of view in the political domain. In: COLING 2016, the 26th International Conference on Computational Linguistics, pp. 2461\u20132470 (2016)","key":"20_CR23"},{"doi-asserted-by":"crossref","unstructured":"M\u2019rabet, Y., Demner-Fushman, D.: HOLMS: alternative summary evaluation with large language models. In: Proceedings of the 28th International Conference on Computational Linguistics, pp. 5679\u20135688 (2020)","key":"20_CR24","DOI":"10.18653\/v1\/2020.coling-main.498"},{"doi-asserted-by":"crossref","unstructured":"Paul, M., Girju, R.: A two-dimensional topic-aspect model for discovering multi-faceted topics. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, pp. 545\u2013550. AAAI 2010, AAAI Press (2010)","key":"20_CR25","DOI":"10.1609\/aaai.v24i1.7669"},{"doi-asserted-by":"crossref","unstructured":"Post, M.: A call for clarity in reporting BLEU scores. In: Proceedings of the Third Conference on Machine Translation: Research Papers, pp. 186\u2013191. ACL (2018). https:\/\/www.aclweb.org\/anthology\/W18-6319","key":"20_CR26","DOI":"10.18653\/v1\/W18-6319"},{"doi-asserted-by":"publisher","unstructured":"Rauh, C., Schwalbach, J.: The ParlSpeech V2 data set: full-text corpora of 6.3 million parliamentary speeches in the key legislative chambers of nine representative democracies (2020). https:\/\/doi.org\/10.7910\/DVN\/L4OAKN","key":"20_CR27","DOI":"10.7910\/DVN\/L4OAKN"},{"unstructured":"Samuel, D., et al.: NorBench \u2013 a benchmark for Norwegian language models. In: NoDaLiDa. University of Tartu Library (2023)","key":"20_CR28"},{"unstructured":"Shazeer, N., Stern, M.: Adafactor: adaptive learning rates with sublinear memory cost. In: ICML, pp. 4596\u20134604. PMLR (2018)","key":"20_CR29"},{"unstructured":"Sn\u00e6bjarnarson, V., et al.: A warm start and a clean crawled corpus - a recipe for good language models. In: LREC, pp. 4356\u20134366. ELRA, Marseille, France (2022)","key":"20_CR30"},{"unstructured":"Solberg, P.E., Ortiz, P.: The Norwegian Parliamentary Speech Corpus. arXiv preprint arXiv:2201.10881 (2022)","key":"20_CR31"},{"unstructured":"Steingr\u00edmsson, S., Barkarson, S., \u00d6rn\u00f3lfsson, G.T.: IGC-parl: Icelandic corpus of parliamentary proceedings. In: Proceedings of the Second ParlaCLARIN Workshop. pp. 11\u201317. ELRA, Marseille, France (2020)","key":"20_CR32"},{"key":"20_CR33","series-title":"Lecture Notes in Computer Science","doi-asserted-by":"publisher","first-page":"533","DOI":"10.1007\/978-3-319-30671-1_39","volume-title":"Advances in Information Retrieval","author":"T Thonet","year":"2016","unstructured":"Thonet, T., Cabanac, G., Boughanem, M., Pinel-Sauvagnat, K.: VODUM: a topic model unifying viewpoint, topic and opinion discovery. In: Ferro, N., et al. (eds.) ECIR 2016. LNCS, vol. 9626, pp. 533\u2013545. Springer, Cham (2016). https:\/\/doi.org\/10.1007\/978-3-319-30671-1_39"},{"unstructured":"Tiedemann, J.: Parallel data, tools and interfaces in OPUS. In: Proceedings of the Eighth International Conference on Language Resources and Evaluation (LREC\u201912). ELRA (2012)","key":"20_CR34"},{"unstructured":"Vamvas, J., Sennrich, R.: X-Stance: A Multilingual Multi-Target Dataset for Stance Detection. CoRR abs\/2003.08385 (2020). https:\/\/arxiv.org\/abs\/2003.08385","key":"20_CR35"},{"unstructured":"Virtanen, A., et al.: Multilingual is not enough: BERT for Finnish. arXiv preprint arXiv:1912.07076 (2019)","key":"20_CR36"},{"doi-asserted-by":"publisher","unstructured":"Xue, L., et al.: mT5: a massively multilingual pre-trained text-to-text transformer. In: NAACL. ACL (2021). https:\/\/doi.org\/10.18653\/v1\/2021.naacl-main.41","key":"20_CR37","DOI":"10.18653\/v1\/2021.naacl-main.41"},{"doi-asserted-by":"crossref","unstructured":"Yang, D., Zhang, Z., Zhao, H.: Learning better masking for better language model pre-training. arXiv preprint arXiv:2208.10806 (2022)","key":"20_CR38","DOI":"10.18653\/v1\/2023.acl-long.400"}],"container-title":["Lecture Notes in Computer Science","Advances in Intelligent Data Analysis XXII"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1007\/978-3-031-58547-0_20","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,4,15]],"date-time":"2024-04-15T19:04:47Z","timestamp":1713207887000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1007\/978-3-031-58547-0_20"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"ISBN":["9783031585463","9783031585470"],"references-count":38,"URL":"https:\/\/doi.org\/10.1007\/978-3-031-58547-0_20","relation":{},"ISSN":["0302-9743","1611-3349"],"issn-type":[{"type":"print","value":"0302-9743"},{"type":"electronic","value":"1611-3349"}],"subject":[],"published":{"date-parts":[[2024]]},"assertion":[{"value":"16 April 2024","order":1,"name":"first_online","label":"First Online","group":{"name":"ChapterHistory","label":"Chapter History"}},{"value":"IDA","order":1,"name":"conference_acronym","label":"Conference Acronym","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"International Symposium on Intelligent Data Analysis","order":2,"name":"conference_name","label":"Conference Name","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Stockholm","order":3,"name":"conference_city","label":"Conference City","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"Sweden","order":4,"name":"conference_country","label":"Conference Country","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"2024","order":5,"name":"conference_year","label":"Conference Year","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"24 April 2024","order":7,"name":"conference_start_date","label":"Conference Start Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"26 April 2024","order":8,"name":"conference_end_date","label":"Conference End Date","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"22","order":9,"name":"conference_number","label":"Conference Number","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"ida2024","order":10,"name":"conference_id","label":"Conference ID","group":{"name":"ConferenceInfo","label":"Conference Information"}},{"value":"https:\/\/ida2024.org\/","order":11,"name":"conference_url","label":"Conference URL","group":{"name":"ConferenceInfo","label":"Conference Information"}}]}}